
INTEGRAL 11(1):11- 18, 2013
ISSN: 1410 - 1335 (print) / ISSN: 2337 - 3784 (online)

VERTICES IN A SCALAR-GRAVITY SYSTEM IN THE
TELEPARALLEL GRAVITY THEORY

Triyanta1 and Kian Ming2

1KK FTETI, FMIPA, Institut Teknologi Bandung
Email:triyanta@fi.itb.ac.id

2Department of Physics, Parahyangan Catholic University, Bandung
Email:kian.ming@unpar.ac.id

Received:16 April 2012, Accepted:20 June 2012

Abstract

We consider a scalar field interacting gravitationally in teleparallel gravity theory.
In this theory, the gravity is defined as a translational gauge field and thus gravita-
tional interaction can be introduced through a minimal coupling prescription as in
standard gauge theory. In this paper we consider scalar-gravity interacting terms of
the scalar-gravity Lagrangian and derive the corresponding vertices by writing the
tetrad field hµa as δµa + bµa . We obtain six different vertices: one-gravity, two-gravity,
etc. up to six-gravity vertices.

Keywords: Teleparallel gravity, scalar field, scalar-gravity vertices.

Abstrak

Kami meninjau medan skalar yang berinteraksi secara gravitasional dalam teori
gravitasi teleparalel. Dalam teori ini medan gravitasi didefinisikan sebagai medan
gauge translasi sehingga interaksi gravitasi dapat dibangun melalui preskripsi ko-
pling minimal sebagaimana dalam teori gauge standar. Dalam makalah ini kami
meninjau suku-suku interaksi gravitasi skalar pada Lagrangian untuk sistem medan
gravitasi skalar dan menurunkan verteks-verteks yang terkait melalui pengungkapan
medan tetrad hµa sebagai δµa +bµa . Kami peroleh enam verteks berbeda: verteks satu
gravitasi, dua gravitasi, dan seterusnya sampai verteks enam gravitasi.

Kata Kunci: Gravitasi teleparalel, medan skalar, verteks gravitasi skalar.

1. Pendahuluan

The gravitational interaction was founded long ago by Isaac Newton. Gravitational inter-
action describes attraction between two masses matter which called gravitational force.
The field associate with these interaction is gravitational field and its known to be pos-
sessed by masses matter.
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In the early of 20th century, Albert Einstein established the special theory of relativity,
shortly known as special relativity (SR). Special relativity provides the notion that light
will have the same speed regardless seen from any observer. Soon, this theory lead Einstein
to predict the effect of SR into Newton’s theory of gravitation. Then in 1915 Einstein
published the general theory of relativity.
The general theory of relativity provides the notion that gravity is related to space-time.
Gravity curves the space-time so objects will moves on a curved path [1]. This “new”
gravitational theory lead to the more wide application of gravitational theory in the future,
including GPS.
In the same era, the theory that tries to understand the behaviour of small objects (or
particle) emerges, known as the quantum theory. Then, because subatomic particle travel
with speed close to light speed (c = 3 x 108 m/s), the special theory of relativity is
considered to play a role in quantum mechanics. This two theories forms quantum field
theory (QFT).
There are four interactions in physics: weak, strong, gravitational, and electromagnetic.
The weak, strong, and electromagnetic interaction are described by gauge field theory, a
theory which has an important role in maintaining symmetry properties in QFT. There-
fore, only gravitational interaction that originally can’t be described using gauge theory.
Attempts to using gauge theory to described gravitational interaction have been done by
H. Weyl and A. Einstein [2]. Although their attempt were not successful, they have laid
a foundation for a gauge theory for gravitation, named as teleparallel gravity.
In teleparallel gravity (TG) or tele-equivalent general relativity (TEGR) the gravity is
defined as a translational gauge field Bµ [2],[3]. It is a translational gauge field because
the corresponding generators ∂a∼= ∂/∂xa are the generators of translation transformations,
in this case translation transformations in tangent space of a four dimensional curved
space-time. In the above, the Latin indices a correspond to Minkowski or tangent while
the Greek indices relate to curved space-time. Thus we can write Bµ= Ba

µ∂a where Ba
µ

are the components of the gauge field defined in local bases ∂a. Ba
µ are defined to have

a relationship with tetrad fields in Einstein general relativity.
The field strength of the translational gauge field is defined just like in the standard gauge
theory. In fact, it is equivalent to the Weitzenbock torsion, the torsion defined from the
curvature less Weitzenbock connection. Its explicit form, in terms of the tetrad and spin
connection, is

•
T aνµ = ∂νh

a
µ − ∂µhaν . (1)

Note that in general there are spin connection terms, however in TG this connection is
to vanish [2], resulting that the torsion is just like the field strength for an abelian gauge
field such as the electromagnetic field. The Lagrangian of the gravitational field is defined
as quadratic in the field strength or the Weitzenbock torsion [2],[3]:

2k
h

•
L grav = 1

4

•
T ρµν

•
T µν
ρ +1

2

•
T ρµν

•
T νµρ−

•
T ρµρ

•
T νµν . (2)

In the above, h = det(ha
µ). However uunlike in the standard gauge theory, we have in

the above expression, two extra terms, i.e. the last two terms. This is due to one extra
number of space-time indices for the torsion compared to that for the field strength in
standard gauge theory.
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Since the gravitational field in TG is a gauge field, matter fields that interact with gravity
can be represented by Lagrangians obtained from applying minimal coupling prescription
to the Lagrangian of the corresponding free matter fields. Such Lagrangians have been
derived [2],[3]. Field equations for some space-time have been solved for certain conditions
[4],[5],[6]. In this paper we will consider the Lagrangian for a scalar (scalar) field that
interacts with gravity and find out the corresponding vertices.
The organization of the paper is the following. In the next section we will review the
scalar-gravity system in TG theory. Here we will show the Lagrangian of the system.
This Lagrangian will then be utilized in Section 3 to obtain vertices. Section 4 is devoted
for conclusions.

2. Lagrangian of Scalar-Gravity System

The Lagrangian of a scalar-gravity system, according to gauge theory, consists of the
Lagrangian of gravity plus the Lagrangian of a free scalar field after replacing the space-
time partial derivative in the later Lagrangian by the covariant one. In this case the
covariant derivative is of the form

•
Da ≡ hµa

•
D
µ

= hµa

(
∂µ + i

2

•
Kab

µ
Sab

)
(3)

In the above,
•
Kab

µis the Weitzenbock contortion and Sab is the generator of the Lorentz
group. The free scalar field Lagrangian is defined in Minkowski or tangent space as the
following

Lφ = 1
2
ηab∂aφ ∂bφ−m2φ2. (4)

Thus insertion of a gravitational effect in TG to a scalar field is equivalent to changing

partial derivatives in Minkowski space ∂a by the covariant one
•
Da(also in Minkowski

space):
•
L φ =

h

2

(
gµν

•
Dµ φ

•
Dν φ−m2φ2

)
. (5)

The complete system of a scalar-gravity field is described by the Lagrangian (2) and (5):

•
L = h

2

(
gµν

•
Dµ φ

•
Dν φ−m2φ2

)
+

h
2k

(
1
4

•
T ρµν

•
T µν
ρ +1

2

•
T ρµν

•
T νµρ−

•
T ρµρ

•
T νµν

)
.

(6)

In the above, k=8πG/c4 where G is the gravitational constant.

3. Vertices

The dynamics of a free scalar field φ is described by the Klein-Gordon equation which is
a linear differential equation. The corresponding Lagrangian has a bilinear form whose
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function in between the fields φ (x ) and φ (y) describes inverse of the Green function,
or the inverse propagator [7],[8]. When the field interacts, the gauge field is introduced
resulting in new terms in the Lagrangian, the interaction terms. These terms are non-
bilinear, consist of two scalar field and at least one gauge field, and define vertices of the
theory. Scattering of the field perturbatively is expressed by Feynman diagrams, each
containing vertices, propagators, and of course the fields [7],[8].
For a scalar field interacting gravitationally through teleparallel gravity as described by
equation (6) the vertices come from the non-bilinear terms within the term containing co-
variant derivatives, thus equation (5). Since scalar fields belong to the null representation
Sabφ = 0, the equation (5) can be written as

Lφ =
h

2

[
ηabhµah

ν
b (∂µφ)(∂νφ)−m2φ2

]
(7)

Because tetrad fields ha
µ represent gravitational fields, all terms in (7) are non-bilinear.

Accordingly, to develop perturbation theory for scalar fields interacting gravitationally,
that is to write the above Lagrangian as the Lagrangian for free field (equation (4)) plus
an interacting Lagrangian, one must write

hµa = δµa + bµa . (8)

Here the field ba
µ replaces ha

µ to represent the gravitational field.
As h has the form of a fourth power of ha

µ, equation (8) gives the form

h = 1 + 4(b) + 12(bb)+24(bbb) + 24(bbbb). (9)

The coefficients in (9) describe the number of terms for different powers of b.
The last four terms in equation (9) and the mass term of the Lagrangian define the
following vertices (solid lines represent scalar fields while wavy lines represent gravitational
fields (ba

µ)):
We have four one-gravity vertices with different ba

µ(b0
0, b1

1, b2
2, b3

3); twelve two-
gravity vertices with the forms of ba

µ=abb
ν=band −baµ=bbbν=a with all possible but dif-

ferent values of a,b; twenty four three-gravity vertices with the forms of ba
µbb

νbc
α with

all possible but different values of a, b, c and permutation of µ=a, ν=b, α=c (with neg-
ative sign for odd permutation); and twenty four four-gravity vertices with the forms of
ba

µbb
νbc

αbd
β with all possible but different values of a, b, c, d and permutation of µ=a,

ν=b, α=c, β=d (with negative sign for odd permutation).
Now let us consider the first term of equation (7). It has the factor of h(ηabhµah

ν
b ). Its

explicit form consists of one b-free term describing the kinetic term of the Lagrangian
and a number of b-terms, first power to sixth power of b. To express the corresponding
vertices let us write

φ(x) =
∫
dk φ(k) exp(ikx)

=
∫
dp φ(p) exp(ipx).

(10)

Accordingly, the first term of equation (7) in momentum space has the form

hηef (kepf + k · bepf + p · bekf + k · bep · bf ). (11)
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Figure 1. (a)One - Gravity Vertex, (b) Two-Gravity Vertex, (c)Three-Gravity Vertex, (d)Four-
Gravity Vertex

Note that the above dot product is defined for space-time indices. Recalling equation
(9), equation (11) leads to the following vertices in momentum space. The first term in
equation (11) gives a kinetic term and vertices with the same diagrams as in figure 1 but
by replacing −1

2
m2 → −1

2
ηabkapb.

Figure 2. (a)One - Gravity Vertex, (b) Two-Gravity Vertex, (c)Three-Gravity Vertex, (d)Four-
Gravity Vertex

Vertices corresponding to the second and third terms of equation (11) can be obtained
from diagrams in figure 1 by adding one extra be

σ-field and by changing

−1
2
m2 → −1

2
ηef (kσpf + pσkf ).

(k and p are the momenta of scalar fields):
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Figure 3. (a)Two - Gravity Vertex, (b) Three-Gravity Vertex, (c)Four-Gravity Vertex, (d)Five-
Gravity Vertex

Vertices corresponding to the last term of equation (11) can be obtained from diagrams in
Figure 1 by adding two extra be

σand bf
ρ fields and by replacing −1

2
m2 → −1

2
ηefk ·bep ·bf .

Figure 4. (a)Three - Gravity Vertex, (b) Four-Gravity Vertex, (c)Five-Gravity Vertex, (d)Six-
Gravity Vertex

4. Conclusions

We have derived scalar-gravity vertices of the scalar field interacting gravitationally in TG.
There are six main different vertices, namely, one, two, three, four, five, and six gravity
vertices. Figure 1.a and figure 2.a constitute one gravity vertices, figure 1.b, figure 2.b,
and figure 3.a give two gravity vertices, while figure 1.c, figure 2.c, figure 3.b, and figure
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4.a give three gravity vertices. We have four gravity vertices from figure 1.d, figure 2.d,
figure 3.c, and figure 4.b, five gravity vertices from figure 3.d, and figure 4.c, and finally
six gravity vertices from figure 4.d. Figures 5 below summarizes the vertices.

Figure 5. (a)One - Gravity Vertex, (b) Two-Gravity Vertex, (c)Three-Gravity Vertex, (d)Four-
Gravity Vertex, (e)Five-Gravity Vertex, (f)Six-Gravity Vertex

The above vertices will be the basis for Feynman diagrams of scalar fields scattered
gravitationally. In computing the scattering we need to know propagators for both scalar
dan gravitational fields. This will be considered elsewhere.
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