Karakteristik Rheologi Petis Berbasis Kepala dan Kulit Udang

Disusun Oleh:
Yansen Hartanto S.T.,M.T.

Lembaga Penelitian dan Pengabdian kepada Masyarakat
Universitas Katolik Parahyangan
2015
DAFTAR ISI

LEMBAR JUDUL ... 1
DAFTAR ISI .. 2
ABSTRAK ... 4
BAB I PENDAHULUAN .. 5
1.1 Latar Belakang .. 5
1.2 Identifikasi Masalah ... 6
1.3 Tujuan Penelitian ... 6
1.4 Target Penelitian ... 7
BAB II TINJAUAN PUSTAKA ... 8
2.1 Rheologi ... 8
 2.1.1 Pengantar Rheologi ... 8
 2.1.2 Parameter Rheologi .. 8
2.2 Jenis-jenis Fluida ... 12
 2.2.1 Time Dependent .. 12
 2.2.2 Time Independent .. 13
2.3 Pemodelan Perilaku Rheokinetik .. 14
 2.3.1 Pemodelan Fluida Time Independent ... 14
 2.3.2 Pemodelan Fluida Time Dependent ... 15
2.4 Tinjauan Komposisi Bahan Baku ... 16
 2.4.1 Komposisi pada Kepala dan Kulit Udang ... 16
 2.4.2 Komposisi pada Petis Udang ... 17
BAB III METODOLOGI PENELITIAN ... 18
3.2 Penelitian Pendahuluan ... 18
3.3 Penelitian Utama .. 19
BAB IV JADWAL PELAKSANAAN ... 22
BAB V HASIL dan PEMBAHASAN .. 23
5.1 Petis Berbahan Kepala dan Kulit Udang .. 23
5.2 Pengolahan Petis Sebagai Bahan Dasar Penelitian ... 23
5.3 Analisa Fluida Petis .. 24
5.4 Analisa nilai K dan n .. 27
 5.4.1 Model Power Law .. 27
 5.4.2 Model Casson ... 29
 5.4.3 Model Herschel Bulkley ... 30
5.5 Analisa nilai yield stress ...31
 5.5.1 Model Power Law ..31
 5.5.2 Model Casson ...32
 5.5.3 Model Herschel Bulkley ...33

5.6 Analisa nilai E_a ...34
 5.6.1 Model Power Law ..34
 5.6.2 Model Casson ...35
 5.6.3 Model Herschel Bulkley ...36

5.7 Akurasi Model ...36
 5.7.1 Model Power Law ..36
 5.7.2 Model Casson ...37
 5.7.3 Model Herschel Bulkley ...38

BAB VI KESIMPULAN ..39
DAFTAR PUSTAKA ...40
ABSTRAK

Rheologi adalah ilmu yang mempelajari perubahan bentuk dan aliran dari fluida serta bagaimana respon fluida tersebut terhadap penerimaan tekanan dan tegangan. Di dalam dunia industri, rheologi dimanfaatkan untuk pengembangan suatu produk. Dengan mempelajari sifat rheologi, struktur masing-masing produk dapat diketahui dan hal tersebut dapat digunakan dalam perancangan alat-alat produksi dalam industri petis. Mengingat pentingnya karakteristik rheologi, dilakukan penelitian untuk menentukan rheologi pada petis, karena untuk memproduksi suatu produk dalam skala industri perlu memperhatikan sifat atau karakteristik dari bahan yang hendak diproduksi tersebut.

Tujuan dari penelitian ini adalah untuk menentukan jenis fluida petis dan model yang paling tepat untuk mengkarakterisasi fluida petis serta untuk menentukan pengaruh berbagai macam kondisi operasi terhadap parameter rheologi pada model-model yang akan digunakan serta manfaat dari penelitian ini adalah untuk menambah pengetahuan mengenai rheologi pada petis sehingga dapat meningkatkan hasil produksi dan kualitas petis dalam skala industri.

Penelitian akan menghasilkan data rheologi petis pada berbagai variasi temperatur dan konsentrasi petis yang berupa nilai K (indeks konsistensi) dan n (indeks aliran) serta nilai yield stress dan E_a (sensitivitas viskositas). Variasi temperatur yang digunakan adalah 30°C, 50°C, 70°C sedangkan variasi konsentrasi yang digunakan adalah 60%, 55%, 50% (b/b).

Hasil penelitian ini menunjukkan bahwa petis merupakan fluida *time-independent* dan termasuk ke dalam fluida *shear thinning*. Pada setiap model yaitu Power Law, Casson dan Herschel Bulkley, nilai K (indeks konsistensi) akan semakin menurun apabila dikenakan temperatur yang semakin besar dan konsentrasi petis yang semain kecil sedangkan nilai n (indeks aliran) tidak menunjukkan perubahan yang signifikan terhadap temperatur dan penambahan konsentrasi. Selain itu, nilai yield stress dan E_a pada setiap model yang diterapkan, hasil perobahan menunjukkan bahwa semakin besar temperatur dan semakin kecil konsentrasi petis maka nilai yield stress dan E_a akan semakin menurun. Untuk model yang paling akurat dan cocok dalam menganalisa atau mengkarakteristik fluida petis adalah model Casson dengan hasil R^2 yang mendekati bahkan mencapai angka 1.
BAB I. PENDAHULUAN

1.1 Latar Belakang

Industri pangan memiliki peranan yang sangat penting untuk kehidupan sehari-hari. Perancangan alat pada setiap proses seperti pompa dan sistem perpipaan membutuhkan karakteristik rheologi dari fluida yang akan diproses. Hal tersebut perlu diketahui untuk menghindari dampak negatif bagi ekonomi serta proses industri itu sendiri.

Rheologi adalah ilmu yang mempelajari perubahan bentuk dan aliran dari fluida serta bagaimana respon fluida tersebut terhadap penerimaan tekanan dan tegangan. Di dalam dunia industri, rheologi dimanfaatkan untuk pengembangan suatu produk. Dengan mempelajari sifat rheologi, struktur masing-masing produk dapat diketahui dan hal tersebut dapat dikaitkan dengan proses yang menyangkut perpindahan massa, panas dan perpindahan momentum. Pada akhirnya, dengan mengetahui sifat rheologi dari suatu produk, maka akan memungkinkan untuk memproses produk tersebut (Ibarz and Barbosa-Cánovas 2010).

Indonesia merupakan negara kepulauan yang sangat luas dengan hampir dua per tiga wilayah berupa lautan yang memiliki banyak kekayaan alam. Salah satu kekayaan alam tersebut adalah hasil laut yang diantaranya yaitu berbagai jenis ikan, udang, kerang dan alga yang dapat dimanfaatkan sebagai sumber pangan dan sumber energi (Semadi 2010).

 Salah satu bahan pangan yang dapat diproduksi dari hasil laut tersebut yaitu petis. Berikut adalah data produksi perikanan di Indonesia :

![Produksi Perikanan Indonesia 2011-2014](image)

Gambar 1.1 Produksi Perikanan Indonesia (Badan Pusat Statistik, 2014)
Petis merupakan makanan tradisional yang bahan utamanya berasal dari kekayaan laut. Mengingat bahwa Indonesia merupakan negara penghasil laut yang cukup melimpah maka salah satu bahan baku yang digunakan adalah udang tetapi karena harga udang yang tinggi, bahan utama dapat diganti dengan pemanfaatan limbah dari kepala dan kulit udang.

Pembuatan petis secara umum dilakukan dengan mencuci bersih sisa-sisa kepala dan kulit udang lalu merebus semua bahan tersebut. Setelah itu, ke dalam hasil rebusan ditambahkan gula merah lalu dipanaskan hingga mengental dan berbentuk pasta yang berwarna cokelat kehitaman.

Oleh karena banyak masyarakat Indonesia yang menyukai petis sebagai bumbu atau alternatif bahan dalam masakan, produksi petis dibuat dalam skala besar yaitu skala industri. Pembuatan petis dalam skala industri membutuhkan pengetahuan, data dan karakteristik rheologi dari petis itu sendiri. Hal tersebut dapat digunakan dalam perancangan alat-alat produksi dalam industri petis. Selain itu, karakteristik rheologi tidak terlepas dari beberapa parameter yang berpengaruh terhadap viskositas fluida diantaranya yaitu temperatur dan konsentras. Meningkat pentingnya karakteristik rheologi, dilakukanlah penelitian tentang rheologi pada petis, karena untuk memproduksi suatu produk dalam skala industri perlu memperhatikan sifat atau karakteristik dari bahan yang hendak diproduksi tersebut.

1.2 Identifikasi Masalah
1. Bagaimana pengaruh temperatur terhadap viskositas dan parameter rheologi petis?
2. Bagaimana pengaruh konsentrasi terhadap viskositas dan parameter rheologi petis?
3. Bagaimana pengaruh kecepatan pengadukan terhadap viskositas dan parameter rheologi petis?
4. Apakah petis termasuk jenis fluida time-dependent atau time-independent?

1.3 Tujuan
1. Mengetahui pengaruh temperatur terhadap viskositas dan parameter rheologi petis.
2. Mengetahui pengaruh konsentrasi terhadap viskositas dan parameter rheologi petis.
3. Mengetahui pengaruh kecepatan pengadukan terhadap viskositas dan parameter rheologi petis.
4. Menentukan jenis fluida dari petis.
1.4 Target Penelitian

BAB II. TINJAUAN PUSTAKA

2.1 Rheologi

2.1.1 Pengantar Rheologi

Kata rheologi pertama kali diartikan oleh Eugene C. Bingham sebagai segala sesuatu yang mengalir. Sekarang ini rheologi lebih dikenal sebagai ilmu yang mempelajari perubahan bentuk dan aliran dari fluida serta bagaimana respon fluida tersebut terhadap penerimaan tekanan dan tegangan (Steffe 1996).

Di dalam dunia industri, rheologi dimanfaatkan untuk pengembangan suatu produk. Dengan mempelajari sifat rheologi, struktur dari masing-masing produk dapat diketahui dan hal tersebut dapat dikaitkan dengan proses teknik yang biasanya menyangkut perpindahan massa, panas dan perpindahan momentum. Pada akhirnya, dengan mengetahui sifat rheologi dari suatu produk atau benda, maka akan memungkinkan untuk memproses produk tersebut (Ibarz and Barbosa-Cánovas 2010).

Pada industri pangan, data rheologi dibutuhkan untuk (Steffe 1996):

a. menghitung proses engineering (perpipaan, pompa, pencampuran, pertukaran panas, pelapisan)

b. mengontrol kualitas produk baik final maupun intermediet

c. mengevaluasi tekstur makanan dengan mengkorelasi sensor data

d. menetapkan fungsi bahan pada pengembangan produk

2.1.2 Parameter Rheologi

Dalam aplikasinya pengembangan rheologi tidak lepas dari beberapa parameter yaitu :

a) Viskositas

Viskositas adalah suatu kuantitas yang menjelaskan kemampuan suatu fluida untuk mengalir (Elert 2005). Viskositas digunakan dalam perhitungan parameter momentum dan energi serta digunakan juga di dalam industri sebagai kontrol kualitas dari beberapa produk. Oleh karena alasan tersebut, rheologi dalam industri dibutuhkan untuk model matematika dengan melakukan percobaan di setiap kasusnya.

Karakteristik rheologi pada setiap fluida sangat penting kaitannya dengan industri makanan, begitu pula dengan viskositas yang diterapkan sebagai landasan dalam
Viskositas dapat dibagi menjadi tiga macam:

a. Viskositas Dinamik atau Viskositas Absolut

Viskositas dinamik terjadi ketika suatu fluida menunjukkan ketahanannya terhadap aliran ketika dikenakan kecepatan yang berbeda. Viskositas dinamik merupakan viskositas yang umumnya dipakai untuk pengukuran. Ilustrasi yang terjadi dapat digambarkan dengan keadaan di mana suatu fluida yang berada di antara dua pelat dikenakan gaya yang menyebabkan bagian paling atas dari fluida tersebut bergerak dan diikuti oleh bagian bawah fluida yang bergerak secara perlahan.

![Gambar 2.1](image)

Gambar 2.1 Pergerakan Viskositas Dinamik

Jika gaya yang diberikan di bagian atas pelat cukup besar, maka fluida akan bergerak paralel dari kecepatan tinggi pada bagian atas pelat hingga kecepatan rendah di bagian paling bawah pelat, sehingga setiap lapisan bagian dari fluida akan memberikan gesekan yang lebih besar untuk setiap gaya yang diberikan.

Persamaan viskositas dinamik adalah sebagai berikut:

\[F = \mu A \frac{u}{y} \]

\(\mu \) : viskositas dinamik (Pa.s)

\(\frac{F}{A} = \frac{Tekanan}{Luas Area} = \sigma \) ; sehingga

\[\sigma = \mu \frac{du}{dy} \]

\(\sigma \) adalah tekanan pada lapisan fluida.
b. Viskositas Kinematik

Viskositas kinematik merupakan rasio dari viskositas dinamik dibagi dengan densitas dan dilambangkan dengan ν yang memiliki satuan m2/s atau Stokes dengan 1 Stokes = 10^{-4} m2/s.

Viskositas kinematik digunakan untuk mengukur ketahanan dari suatu fluida yang dipengaruhi oleh gaya gravitasi. Semakin besar viskositas kinematik, semakin mudah suatu fluida mengalir sesuai arah gravitasi.

Persamaan viskositas kinematik adalah sebagai berikut:

$$\nu = \frac{\mu}{\rho}$$

Di mana:

μ : viskositas dinamik (Pa.s = kg/m.s)

ρ : densitas (kg/m3)

c. Viskositas Nyata (apparent viscosity)

Apabila viskositas dipengaruhi oleh shear rate, perlu ditegaskan bahwa nilai viskositas yang diperoleh berbeda dari viskositas fluida ideal, nilai yang didapatkan tersebut merupakan viskositas nyata (apparent viscosity). Nilai dari viskositas nyata mewakili salah satu faktor yang mempengaruhi viskositas. Jadi, dapat disimpulkan bahwa viskositas nyata adalah viskositas yang dipengaruhi oleh shear rate.

b) Shear Rate

Shear rate adalah kecepatan deformasi aliran yang terjadi di antara lapisan pelat pada fluida. Untuk fluida Newtonian, shear rate sangat cocok untuk pola aliran yang memberikan bentuk geometris, pola aliran tersebut digunakan untuk menghitung nilai maksimum pada saat fluida mengalir di antara lapisan pelat. Untuk fluida non-
Newtonian, hubungan tersebut hanya digunakan untuk pendekatan suatu perhitungan. Persamaan untuk shear rate adalah:

\[
\gamma = \frac{v}{h}
\]

\(\gamma\) = shear rate (s\(^{-1}\))
\(v\) = kecepatan bergeraknya pelat (m/s)
\(h\) = jarak antara kedua pelat (m)

c) Shear Stress
Dalam ilmu fisika, shear stress diartikan sebagai perubahan bentuk dari suatu material yang bergantung pada keadaan tekanan. Persamaan untuk shear stress adalah:

\[
\sigma = \frac{F}{A}
\]

\(\sigma\) = shear stress (Pa)
\(F\) = gaya (N)
\(A\) = luas area (m\(^2\))

d) Yield Stress

Persamaan yield stress terdapat di dalam persamaan viskositas nyata (apparent viscosity) yang dituliskan sebagai berikut:

\[
\eta = \frac{\sigma - \sigma_0}{\dot{\gamma}}
\]
\(\sigma_0\) = yield stress (Pa)
\(\eta\) = apparent viscosity (Pa.s = 1000 cP)
\(\dot{\gamma}\) = shear rate (s\(^{-1}\))
2.2 Jenis - jenis Fluida

Fluida dapat dibagi menjadi dua kategori sesuai ketergantungan waktu terhadap kecepatan putaran yaitu:

- **Time Independent**
 - non-Newtonian
 - Shear thinning
 - Shear thickening

- **Time Dependent**
 - Newtonian
 - Thixotropic
 - Rheopectic

![Diagram of Fluida Types](image)

Gambar 2.2 Jenis - jenis Fluida

2.2.1 *Time Dependent*

a. Fluida *time thinning* atau dikenal dengan fluida *thixotropic* merupakan fluida yang viskositasnya menurun terhadap waktu saat dikenakan kecepatan putaran yang konstan, contoh dari fluida *thixotropic* : yoghurt dan krim. Kekentalan dari yoghurt dan krim akan semakin encer apabila dilakukan pengadukan yang konstan secara terus menerus.

b. Fluida *time thickening* atau dikenal dengan fluida *rheopectic* merupakan fluida yang viskositasnya akan meningkat terhadap waktu saat dikenakan kecepatan putaran yang konstan, contoh dari fluida *rheopectic* : selai pasta dengan konsentrat tinggi. Viskositas selai pasta akan meningkat apabila dilakukan pengadukan konstan secara terus menerus (Mardianti).
2.2.2 Time Independent

a. Fluida Newtonian adalah fluida yang mengikuti hukum Newton di mana viskositasnya konstan saat shear rate mengalami perubahan. Fluida Newtonian memiliki hubungan garis lurus diantara shear stress dan shear rate dengan intersep 0. Contoh dari fluida Newtonian adalah air, air tidak akan mengental ataupun menjadi lebih encer apabila dikenakan kecepatan putaran atau pengadukan yang besar (Steffe 1996).

b. Fluida non-Newtonian adalah fluida yang tidak menunjukan sifat fluida Newtonian. Fluida yang termasuk non-Newtonia yaitu fluida shear thinning dan shear thickening.

i. Shear thickening adalah fluida yang viskositasnya semakin tinggi apabila dikenakan shear rate yang semakin besar. Contoh dari fluida shear thickening adalah pasir basah, pasir basah akan semakin keras atau akan membentuk endapan saat dilakukan pengadukan yang cukup besar.

ii. Shear thinning adalah fluida yang viskositasnya semakin rendah apabila dikenakan shear rate yang semakin besar. Contoh dari fluida shear thinning adalah cat, shampo, kecap. Bahan-bahan tersebut akan semakin encer apabila dikenakan kecepatan putaran besar yang dalam hal ini merupakan pengadukan.
2.3 Pemodelan Perilaku Rheokinetik

2.3.1 Pemodelan Fluida *Time-Independent* (Rao 2014)

a) Model *Power Law*

\[\sigma = K (\dot{\gamma})^n \]

(7)

Model *Power Law* menjelaskan hubungan dari *shear thinning* dan *shear thickening* dengan informasi data \(K \) dan \(n \). Karena hanya memuat data \(K \) dan \(n \), maka model *Power Law* digunakan untuk karakteristik makanan yang berbahan dasar cair. \(K \) dan \(n \) pada rumus *Power Law* merupakan indeks konsistensi dan indeks aliran yang didapatkan melalui percobaan grafik dengan memplot log \(\sigma \) vs log \(\dot{\gamma} \). Hasil nilai \(K \) merupakan intersep dan nilai \(n \) merupakan slop dari grafik tersebut. Untuk kasus fluida Newtonian di mana \(n = 1 \), nilai \(K \) akan setara dengan viskositas dari cairan tersebut. Fluida dengan \(n > 1 \) termasuk ke dalam fluida *shear thickening* sedangkan fluida dengan \(n < 1 \) termasuk ke dalam fluida *shear thinning*.

Model *Power Law* banyak digunakan karena model tersebut dapat dipakai untuk batasan *shear rate* di antara 101 – 104 s\(^{-1}\), batas tersebut dapat digunakan oleh berbagai macam viskometer. Salah satu kekurangan dari model *Power Law* yaitu tidak dapat menjelaskan batasan *shear rate* yang rendah dan tinggi dari data fluida *shear thinning*.

b) Model *Herschel-Bulkley*

\[\sigma - \sigma_{OH} = K_H (\dot{\gamma})^{n_H} \]

(8)
Nilai yield stress pada fluida yang dapat ditentukan termasuk ke dalam model Power Law dan dapat juga dikelompokkan ke dalam model Herschel–Bulkley. Nilai \(\sigma \) pada model Herschel–Bulkley merupakan shear stress (Pa), \(\dot{\gamma} \) adalah shear rate (s\(^{-1}\)), \(n_H \) = indeks aliran, \(K_H \) = indeks konsistensi dan \(\sigma_H \) adalah yield stress. Nilai yield stress pada industri makanan memegang peran yang penting karena suatu fluida dapat berubah bentuk dengan cepat pada nilai shear stress yang lebih rendah daripada nilai yield stress.

c) Model Quemada

\[
\frac{\eta}{\eta_\infty} = \frac{1}{1 - \left\{\left[\frac{\eta_0}{\eta_\infty}\right]^{0.5}\lambda\right\}^2}
\]

(9)

di mana

\[
\lambda = \frac{1}{1 + (t_c \dot{\gamma})^{0.5}}
\]

(10)

\(\lambda \) merupakan parameter struktural, \(\eta_0 = \) zero-shear, \(\eta_\infty = \) infinite-shear dan \(t_c \) adalah waktu konstan. Model Quemada dapat digunakan untuk menguji fluida yang mempunyai sifat diantara shear thinning dan shear thickening dengan nilai yield stress.

2.3.2 Pemodelan Fluida Time Dependent (Rao 2014)

a) Model Weltman

\[
\sigma = A - B \log t
\]

(11)

Model Weltman telah digunakan untuk menganalisa sifat fluida thixotropic dan fluida antithixotropic di mana A adalah nilai dari tegangan pada \(t = 1 \) sekon dan B merupakan suatu konstanta. Pada fluida thixotropic, B bernilai negatif dan pada fluida antithixotropic, B bernilai positif.

b) Model Tiu-Boger

\[
\sigma = \lambda \left[\sigma_{OH} + K_H (\dot{\gamma})^{n_H} \right]
\]

(12)

Tiu-Boger merupakan suatu model pengembangan dari model Herschel-Bulkley untuk mempelajari sifat fluida thixotropic yang menunjukan hubungan dengan nilai yield stress.
stress. Nilai λ (parameter struktural dari *time dependent*) mengikuti hukum orde dua di mana:

$$\frac{\partial \lambda}{\partial t} = -k_1(\lambda - \lambda_e)^2$$ \hspace{1cm} (13)

Konstanta k_1 merupakan fungsi dari *shear rate* yang diperoleh melalui suatu perobaan. Estimasi k_1 dan λ membutuhkan nilai dari viskositas nyata (η_a) yang dinyatakan dalam:

$$\lambda = \frac{\eta_a \dot{\gamma}}{\sigma_{OH} + K_H (\dot{\gamma})^n H}$$ \hspace{1cm} (14)

2.4 Tinjauan Komposisi Bahan Baku

2.4.1 Komposisi pada Kepala dan Kulit Udang

Udang merupakan salah satu produk perikanan yang istimewa karena memiliki aroma yang khas dan nilai gizi yang cukup tinggi. Kepala udang merupakan bagian terbesar dari seluruh bobot udang yang dapat mencapai 36 - 49%, bagian daging dapat mencapai 24 - 41% dan bagian kulit serta ekor yang dapat mencapai 17 - 23%. Proses pengolahan udang dapat menghasilkan limbah padat, antara lain kepala, kulit udang, kaki dan ekor (Nurkhalish).

Di Indonesia, limbah padat tersebut dapat dimanfaatkan sebagai bahan campuran ransum ternak, pupuk, bahan campuran dalam pembuatan terasi, petis dan kerupuk udang. Dibandingkan dengan kepala udang, kulit udang merupakan sumber yang potensial sebagai bahan baku pembuatan kitin. Kitin adalah senyawa pembentuk kitosan, senyawa kitosan memiliki manfaat di bidang industri pangan diantaranya sebagai pengawet bahan makanan yang tidak berbahaya (non toksik). Berikut adalah komposisi yang terdapat di dalam kepala dan kulit udang:

Tabel 2.1 Komposisi pada Kepala dan Kulit Udang (Juhairi 1982 ; 1986)

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Kepala udang (%)</th>
<th>Kulit udang (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>78,51</td>
<td>-</td>
</tr>
<tr>
<td>Protein</td>
<td>12,28</td>
<td>34,9</td>
</tr>
<tr>
<td>Lemak</td>
<td>1,27</td>
<td>19,4</td>
</tr>
<tr>
<td>Kalsium</td>
<td>-</td>
<td>26,7</td>
</tr>
<tr>
<td>Kitin</td>
<td>-</td>
<td>18,1</td>
</tr>
</tbody>
</table>
2.4.2 Komposisi pada Petis Udang

Petis adalah komponen dalam masakan Indonesia yang dibuat dari produk sampingan pengolahan hasil laut seperti pindang, kupang atau udang. Petis berbentuk saus kental berwarna coklat kehitaman dan memiliki rasa manis. Di Jawa Timur, petis biasanya dipakai untuk campuran makanan tradisional sebagai penyedap atau bumbu. Berikut adalah tabel komposisi pada petis udang:

<table>
<thead>
<tr>
<th>Unsur gizi</th>
<th>Petis udang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi (gr)</td>
<td>220</td>
</tr>
<tr>
<td>Air (gr)</td>
<td>39</td>
</tr>
<tr>
<td>Protein (gr)</td>
<td>15</td>
</tr>
<tr>
<td>Lemak (gr)</td>
<td>0,1</td>
</tr>
<tr>
<td>Karbohidrat (gr)</td>
<td>40</td>
</tr>
<tr>
<td>Kalsium (mg)</td>
<td>37</td>
</tr>
<tr>
<td>Fosfor (mg)</td>
<td>36</td>
</tr>
<tr>
<td>Besi (mg)</td>
<td>2,8</td>
</tr>
</tbody>
</table>
BAB III. METODE PENELITIAN

3.1 Penelitian Pendahuluan

Penelitian pendahuluan terdiri dari pembuatan petis dan penentuan fluida *time-dependent* atau *time-independent*.

a. Pembuatan petis

- **Gambar 3.1** Diagram alir pembuatan petis

b. Penentuan fluida *time-dependent* atau *time-independent*

- **Gambar 3.1** Diagram alir pembuatan petis
3.2 Penelitian Utama
Penelitian utama bertujuan untuk mendapatkan data viskositas sampel petis pada rentang shear rate dan waktu tertentu dengan variasi temperatur dan penambahan gula. Alat yang digunakan pada penelitian utama maupun pendahuluan adalah Rheometer DV-III Ultra. Penelitian utama terdiri dari pengaruh temperatur, jumlah penambahan gula dan shear rate terhadap time dependency serta analisis nilai K dan n apabila petis termasuk fluida time-dependent atau time-independent.

a. Pengaruh temperatur terhadap time dependency

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Petis dibuat dengan penambahan gula merah sebanyak 40%, 45%, 50% - b/b</td>
</tr>
<tr>
<td>2</td>
<td>Petis dimasukan ke dalam tabung sample rheometer sebanyak 10 - 12 ml lalu dimasukan ke dalam thermostat</td>
</tr>
<tr>
<td>3</td>
<td>Suhu thermostat divariasikan dari 30°C - 70°C dengan rentang 20°C. Sample diukur viskositasnya dengan kecepatan putaran pada 40 rpm, 60 rpm, 80 rpm</td>
</tr>
<tr>
<td>4</td>
<td>Data viskositas dengan variasi temperatur dialurkan terhadap kecepatan putaran</td>
</tr>
</tbody>
</table>

Gambar 3.3 Diagram alir pengaruh temperatur terhadap time dependency
b. **Pengaruh jumlah penambahan gula terhadap time dependency**

<table>
<thead>
<tr>
<th>Petis dibuat dengan variasi penambahan gula merah sebanyak 40%, 45%, 50% -b/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis dimasukan ke dalam tabung sample rheometer sebanyak 10 - 12 ml lalu dimasukan ke dalam thermostat</td>
</tr>
<tr>
<td>Suhu thermostat diatur pada 30°C, 50°C, 70°C. Sample diukur viskositasnya dengan kecepatan putaran pada 40 rpm, 60 rpm, 80 rpm</td>
</tr>
<tr>
<td>Data viskositas dengan variasi jumlah penambahan gula dialurkan terhadap kecepatan putaran</td>
</tr>
</tbody>
</table>

Gambar 3.4 Diagram alir pengaruh jumlah penambahan gula terhadap time dependency

c. **Pengaruh shear rate terhadap time dependency**

<table>
<thead>
<tr>
<th>Petis dibuat dengan penambahan gula merah sebanyak 40%, 45%, 50% - b/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis dimasukan ke dalam tabung sample rheometer sebanyak 10 - 12 ml lalu dimasukan ke dalam thermostat</td>
</tr>
<tr>
<td>Suhu thermostat diatur pada 30°C, 50°C, 70°C. Sample diukur viskositasnya dengan kecepatan putaran pada 40 rpm, 60 rpm, 80 rpm</td>
</tr>
<tr>
<td>Data viskositas yang didapat dialurkan terhadap waktu</td>
</tr>
<tr>
<td>Kurva viskositas vs waktu menurun</td>
</tr>
<tr>
<td>Petis merupakan fluida thixotropic</td>
</tr>
</tbody>
</table>

Gambar 3.5 Diagram alir penentuan fluida thixotropic atau rheopectic
d. Analisis nilai K dan n apabila petis merupakan fluida time-independent

<table>
<thead>
<tr>
<th>Petis dibuat dengan penambahan gula merah sebanyak 40%, 45%, 50% - b/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis dimasukan ke dalam tabung sample rheometer sebanyak 10 - 12 ml lalu dimasukan ke dalam thermostat</td>
</tr>
<tr>
<td>Suhu thermostat diatur pada 30°C, 50°C, 70°C. Sample diukur viskositasnya dengan kecepatan putaran pada 40 rpm, 60 rpm, 80 rpm</td>
</tr>
<tr>
<td>Data viskositas dan kecepatan putaran yang didapatkan diolah berdasarkan persamaan model Power Law</td>
</tr>
<tr>
<td>Diperoleh nilai K dan n untuk setiap variasi temperatur dan konsentrasi</td>
</tr>
</tbody>
</table>

Gambar 3.6 Diagram alir penentuan model rheokinetik fluida time-independent

e. Analisis nilai K dan n apabila petis merupakan fluida time-dependent

<table>
<thead>
<tr>
<th>Petis dibuat dengan penambahan gula merah sebanyak 40%, 45%, 50% - b/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis dimasukan ke dalam tabung sample rheometer sebanyak 10 - 12 ml lalu dimasukan ke dalam thermostat</td>
</tr>
<tr>
<td>Suhu thermostat diatur pada 30°C, 50°C, 70°C. Sample diukur viskositasnya dengan kecepatan putaran pada 40 rpm, 60 rpm, 80 rpm</td>
</tr>
<tr>
<td>Data viskositas dan kecepatan putaran yang didapatkan diolah berdasarkan persamaan model Tiu-Boger</td>
</tr>
<tr>
<td>Diperoleh nilai K dan n untuk setiap variasi temperatur dan konsentrasi</td>
</tr>
</tbody>
</table>

Gambar 3.7 Diagram alir penentuan model rheokinetik fluida time-dependent
BAB IV JADWAL PELAKSANAAN

Penelitian ini akan dilaksanakan di Laboratorium Teknologi Polimer dan Membran pada bulan Februari - Agustus 2015 bertempat di Universitas Katolik Parahyangan, Bandung, Jawa Barat. Jadwal kerja untuk penelitian ini disajikan dalam gambar berikut ini:

<table>
<thead>
<tr>
<th>Kegiatan</th>
<th>Februari</th>
<th>Maret</th>
<th>April</th>
<th>Mei</th>
<th>Juni</th>
<th>Juli</th>
<th>Agustus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persiapan alat dan bahan</td>
<td>1 2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penelitian pendahuluan</td>
<td></td>
<td>1 2</td>
<td>3 4</td>
<td>1 2</td>
<td>3 4</td>
<td>1 2 3</td>
<td>4 1 2 3</td>
</tr>
<tr>
<td>Penelitian utama</td>
<td></td>
<td></td>
<td>1 2 3</td>
<td>4 1 2</td>
<td>3 4 1</td>
<td>2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Analisis hasil penelitian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3</td>
<td></td>
</tr>
<tr>
<td>Penyelesaian laporan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

22
BAB V HASIL DAN PEMBAHASAN

Bahan baku penelitian ini adalah petis komersial siap pakai yang dicampurkan dengan air sesuai dengan variasi konsentrasi petis yang telah ditentukan. Analisa yang akan dilakukan yaitu penelitian pendahuluan dan penelitian utama. Penelitian pendahuluan bertujuan untuk menentukan fluida petis apakah termasuk ke dalam fluida time dependent atau time independent selanjutnya penelitian utama bertujuan untuk mencari nilai K (indeks konsistensi) dan n (indeks aliran) serta nilai yield stress dan E_a (sensitivitas viskositas terhadap temperatur) pada fluida petis yaitu menggunakan model yang sesuai dengan jenis fluida yang telah ditentukan di penelitian pendahuluan.

5.1 Petis Berbahan Baku Udang

Petis yang digunakan untuk penelitian ini adalah petis udang yang diproduksi di Surabaya dan dapat ditemukan di supermarket besar di Kota Bandung. Tujuan menggunakan petis yang sudah jadi yaitu untuk meminimalkan kesalahan dalam pembuatan petis itu sendiri karena apabila petis dibuat dan diolah sendiri, kemungkinan tidak seragamnya bahan baku yang digunakan lebih besar. Adapun kandungan nutrisi yang terdapat di dalam petis yang digunakan pada penelitian ini yaitu sodium 200 mg, kolestrol 95 mg, gula 8 gram, protein 5 gram, karbohidrat 12 gram dan kalsium sebanyak 18%.

Gambar 5.1 Petis Udang

5.2 Pengolahan Petis Sebagai Bahan Dasar Penelitian

Petis yang sudah jadi dimasukan ke dalam gelas kimia 600 ml masing-masing sebanyak 260,5 gram dan ditambahkan air sesuai variasi konsentrasi petis yang
berbeda-beda. Setelah petis dicampurkan dengan air sesuai variasi, petis diaduk hingga homogen.

Tabel 5.1 Variasi konsentrasi petis

<table>
<thead>
<tr>
<th>Variasi konsentrasi petis</th>
<th>Banyak air yang ditambahkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 %</td>
<td>111,5 gram</td>
</tr>
<tr>
<td>55 %</td>
<td>145,3 gram</td>
</tr>
<tr>
<td>50 %</td>
<td>185,9 gram</td>
</tr>
</tbody>
</table>

Gambar 5.2 Pengolahan Petis Sebagai Bahan Penelitian

5.3 **Analisa Fluida Petis**

Analisa dilakukan dengan variasi konsentrasi petis dan variasi temperatur yang berbeda-beda. Variasi temperatur yaitu 30°C, 50°C, 70°C dilakukan terhadap fluida petis untuk masing-masing konsentrasi sedangkan untuk pengontrolan temperatur dilakukan dengan menggunakan *thermocouple* yang diletakkan di dalam gelas kimia. Penerapan variasi temperatur dilakukan dengan menggunakan *hot plate* yang dilengkapi dengan wadah logam berisi air, tujuan pengunaan wadah logam berisi air adalah agar fluida petis di dalam gelas kimia tidak gosong hanya di bagian bawah saja dan temperatur dapat merata di seluruh bagian fluida petis. Temperatur pada *hot plate* diset hingga temperatur fluida di dalam gelas kimia sesuai dengan variasi temperatur yang telah ditentukan.
Setelah melakukan percobaan dengan menguji fluida petis dari kecepatan tinggi ke rendah dan sebaliknya menggunakan spindle RV 4, didapatkan bahwa fluida petis untuk semua variasi konsentrasi petis dan variasi temperatur adalah fluida *time independent*. Fluida *time independent* adalah fluida yang viskositasnya tidak bergantung terhadap waktu, dengan kata lain viskositasnya akan tetap sama seiring berjalannya waktu. Oleh karena itu, model yang digunakan di dalam penelitian ini akan menggunakan model untuk fluida *time independent* yaitu *Power Law*, *Casson* dan *Herschel Bulkley*.

![Gambar 5.3 Rangkaian alat utama](image)

Gambar 5.3 Rangkaian alat utama

![Gambar 5.4 Grafik fluida *time independent*](image)

Gambar 5.4 Grafik fluida *time independent*

Gambar 5.4 adalah salah satu contoh data yang menghasilkan grafik dengan fluida *time independent*. Dapat dilihat bahwa grafik yang dihasilkan menunjukan

Tabel 5.2 Hasil Analisa Fluida Petis

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Petis 55%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Petis 50%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>Time Independent</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>Time Independent</td>
</tr>
</tbody>
</table>

Selain itu, kecenderungan data viskositas pada fluida petis menunjukan bahwa semakin tinggi temperatur yang dikenakan pada fluida petis, maka viskositasnya akan semakin menurun. Begitu pula sebaliknya saat temperatur semakin rendah, maka viskositas fluida petis akan semakin meningkat. Hasil tersebut telah sesuai dengan persamaan Arrhenius di mana temperatur berbanding terbalik dengan viskositas, berikut adalah persamaan Arrhenius:

$$\mu = A \exp \left(\frac{E_a}{R.T}\right)$$ \hspace{1cm} (1)

Penelitian lain yang memberikan hasil yang serupa adalah penelitian pada tamarind juice concentrate (Ahmed et al. 2007) dan penelitian pada pomelo juice.

5.4 Analisa nilai K dan n

5.4.1 Model Power Law

Hasil analisis model Power Law disajikan dalam tabel di bawah ini.

<table>
<thead>
<tr>
<th>Tabel 5.3 Hasil nilai K dan n Model Power Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis 60%</td>
</tr>
<tr>
<td>Temperatur 30°C</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
</tr>
</tbody>
</table>

Petis 55%	n	K (Pa.s)
Temperatur 30°C	0.5982	0.0338
Temperatur 50°C	0.6398	0.0243
Temperatur 70°C	0.6088	0.0113

Petis 50%	n	K (Pa.s)
Temperatur 30°C	0.5154	0.0008
Temperatur 50°C	0.5545	0.0005
Temperatur 70°C	0.5643	0.0004

Nilai n pada model *Power Law* menunjukan hasil yang berada dalam rentang antara 0,5 hingga 0,6 sehingga dari hasil tersebut dapat disimpulkan bahwa fluida petis merupakan fluida *shear thinning* karena nilai n yang dihasilkan menunjukan nilai $n < 1$ (Steffe 1996). Fluida *shear thinning* adalah fluida yang viskositasnya semakin rendah apabila dikenakan *shear rate* yang semakin besar. Hal serupa ditemukan pada penelitian *pomelo juice* di mana nilai K pada model *Power Law* memiliki kecenderungan data yang sama yaitu semakin besar temperatur dan semakin kecil konsentrasi petis maka nilai K akan semakin menurun sedangkan untuk nilai n berada dalam rentang 0,65 hingga 0,89 sehingga *pomelo juice* pun termasuk ke dalam fluida *shear thinning* (Keshani, Chuah et al. 2012). Perbedaan nilai K dan n yang dihasilkan dari penelitian fluida petis dengan penelitian *pomelo juice* dapat dikarenakan perbedaan komposisi fluida di mana fluida petis lebih banyak mengandung molekul-molekul lain seperti adanya gula, garam, dll sehingga mempengaruhi kekentalan fluida petis itu sendiri.
5.4.2 Model Casson

Hasil analisis model Casson disajikan dalam tabel di bawah ini.

Tabel 5.4 Hasil nilai \(K \) dan \(n \) Model Casson

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th></th>
<th>(K) (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30(^\circ)C</td>
<td>0,2059</td>
<td>0,5366</td>
</tr>
<tr>
<td>50(^\circ)C</td>
<td>0,1890</td>
<td>0,4552</td>
</tr>
<tr>
<td>70(^\circ)C</td>
<td>0,1888</td>
<td>0,3488</td>
</tr>
<tr>
<td>Petis 55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30(^\circ)C</td>
<td>0,2861</td>
<td>0,3993</td>
</tr>
<tr>
<td>50(^\circ)C</td>
<td>0,2289</td>
<td>0,3681</td>
</tr>
<tr>
<td>70(^\circ)C</td>
<td>0,2532</td>
<td>0,3128</td>
</tr>
<tr>
<td>Petis 50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30(^\circ)C</td>
<td>0,3004</td>
<td>0,2624</td>
</tr>
<tr>
<td>50(^\circ)C</td>
<td>0,2436</td>
<td>0,2221</td>
</tr>
<tr>
<td>70(^\circ)C</td>
<td>0,2009</td>
<td>0,2195</td>
</tr>
</tbody>
</table>

Pada model Casson, data yang dihasilkan memiliki kecenderungan yang sama dengan model Power Law yaitu semakin besar temperatur dan semakin kecil konsentrasi petis maka nilai \(K \) akan semakin menurun. Serupa dengan model Power Law, hal tersebut disebabkan nilai \(K \) yang sebanding dengan nilai shear stress di dalam shear rate tertentu (Rao 2014) sehingga perubahan bentuk fluida petis semakin signifikan pada tekanan yang berbeda yang ditimbulkan dari shear rate yang berbeda-beda.

Untuk nilai \(n \) yang didapatkan pada model ini berada di dalam rentang 0,18 hingga 0,28 yang menunjukan bahwa pada model Casson, fluida petis pun termasuk ke dalam fluida shear thinning. Di samping itu, penelitian pomelo juice pada model Casson yang di lakukan oleh (Keshani, Chuah et al. 2012) tidak mencari nilai \(n \) tetapi nilai \(K \) yang dihasilkan memiliki kecenderungan sama dengan model Casson pada fluida petis. Perbedaan nilai \(K \) yang dihasilkan dari penelitian fluida petis dengan penelitian pomelo juice pada model Casson dapat dikarenakan perbedaan komposisi
fluida di mana komposisi fluida petis lebih banyak mengandung molekul-molekul lain seperti adanya gula, garam, dll sehingga mempengaruhi kekentalan fluida petis itu sendiri.

5.4.3 Model Herschel Bulkley

Hasil analisis model Herschel Bulkley disajikan dalam tabel di bawah ini.

Tabel 5.5 Hasil nilai K dan n Model Herschel Bulkley

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th>n</th>
<th>K (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>0,7052</td>
<td>1,2513</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>0,6524</td>
<td>1,2347</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>0,5578</td>
<td>0,9956</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 55%</th>
<th>n</th>
<th>K (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>0,7066</td>
<td>0,6941</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>0,6783</td>
<td>0,6138</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>0,6332</td>
<td>0,5944</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 50%</th>
<th>n</th>
<th>K (Pa.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>0,5902</td>
<td>0,5717</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>0,4777</td>
<td>0,5205</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>0,5116</td>
<td>0,4990</td>
</tr>
</tbody>
</table>

Untuk model Herschel Bulkley, nilai K yang dihasilkan memiliki nilai yang semakin menurun seiring bertambah besarnya temperatur dan semakin kecilnya konsentrasi petis. Hal tersebut serupa dengan penelitian pada model Power Law dan Casson di mana kecenderungan data disebabkan nilai K yang sebanding dengan nilai shear stress pada shear rate tertentu (Rao 2014) yang menyebabkan perubahan bentuk pada fluida petis semakin signifikan dikarenakan tekanan yang ditimbulkan oleh shear rate yang berbeda-beda sehingga menyebabkan nilai K semakin menurun.

Hasil serupa dibuktikan pada penelitian pomelo juice yang menghasilkan nilai K yang semakin menurun pula saat dikenakan temperatur yang semakin besar dan konsentrasi yang semakin kecil. Sedangkan untuk nilai n fluida petis pada model
Herschel Bulkley ini berada di antara rentang 0,47 hingga 0,7 yang menandakan bahwa fluida petis termasuk ke dalam fluida shear thinning. Tidak ada perubahan secara signifikan untuk nilai n terhadap perubahan temperatur dan konsentrasi (Ahmed et al. 2007). Untuk nilai n pada pomelo juice dengan model Herschel Bulkley dihasilkan nilai n yang berada di dalam rentang 0,66 hingga 0,9 sehingga termasuk ke dalam fluida shear thinning karena nilai $n < 1$. Perbedaan nilai K dan n yang dihasilkan dari penelitian fluida petis dengan penelitian pomelo juice pada model Herschel Bulkley ini dapat dikarenakan perbedaan komposisi fluida. Fluida petis lebih banyak mengandung molekul-molekul lain seperti adanya gula, garam, dll sehingga hal tersebut mempengaruhi komposisi fluida petis itu sendiri yang ditandai dengan lebih kentalnya fluida petis.

5.5 Analisa nilai yield stress

5.5.1 Model Power Law

Tabel 5.6 Hasil nilai yield stress model Power Law

<table>
<thead>
<tr>
<th></th>
<th>σ_0 (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis 60%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>3,9865</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>3,4309</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>2,4863</td>
</tr>
<tr>
<td>Petis 55%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>2,2769</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>1,8796</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>1,4504</td>
</tr>
<tr>
<td>Petis 50%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>2,1808</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>1,4282</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>1,1848</td>
</tr>
</tbody>
</table>

Dari pengertian tersebut, hasil percobaan telah menunjukan kesesuaian yaitu dengan meningkatnya temperatur maka pergerakan molekul semakin cepat dan kemungkinan molekul untuk bertumbukan pun semakin besar sehingga viskositas fluida petis semakin encer dan nilai stress minimum yang diperlukan untuk mengalirkan fluida semakin kecil. Selain itu, konsentrasi petis yang paling besar menyebabkan viskositas fluida petis lebih kental dan nilai stress minimum yang diperlukan untuk mengalirkan fluida semakin besar (Keshani, Chuah et al. 2012).

5.5.2 Model Casson

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th>(\sigma_o) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>4,4114</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>4,2090</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>3,1194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 55%</th>
<th>(\sigma_o) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>1,8214</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>1,4060</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>1,3703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 50%</th>
<th>(\sigma_o) (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur 30°C</td>
<td>1,7710</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>1,3864</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>1,3596</td>
</tr>
</tbody>
</table>
Hasil data *yield stress* pada model Casson, dapat dilihat bahwa seiring meningkatnya temperatur, nilai *yield stress* semakin menurun dan untuk konsentrasi petis paling besar, nilai *yield stress* menunjukan nilai yang paling besar pula, hal tersebut dikarenakan *yield stress* adalah nilai minimum yang diperlukan suatu fluida untuk mengalir maka kecenderungan data yang didapatkan telah sesuai dengan pengertian tersebut di mana viskositas fluida petis semakin menurun karena bertambah besaranya temperatur sehingga pergerakan molekul pada fluida petis semakin cepat dan kemungkinan untuk saling bertumbukan semakin besar. Hal tersebut yang menyebabkan nilai *yield stress* semakin menurun karena fluida petis semakin encer sehingga nilai minimum yang diperlukan untuk mengalirkan suatu fluida semakin kecil. Kecenderungan data *yield stress* model Casson ini memiliki kecenderungan yang serupa dengan penelitian pada pomelo juice yang dilakukan oleh (Keshani, Chuah et al. 2012) di mana hasil data *yield stress* menunjukan nilai yang semakin menurun seiring bertambah besaranya temperatur dan mengecilnya konsentrasi.

5.5.3 Model Herschel Bulkley

Tabel 5.8 Hasil nilai yield stress model Herschel Bulkley

<table>
<thead>
<tr>
<th></th>
<th>σ_0 (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis 60%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>1,0953</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>0,1421</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>0,1321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>σ_0 (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis 55%</td>
<td></td>
</tr>
<tr>
<td>Temperatur 30°C</td>
<td>0,6509</td>
</tr>
<tr>
<td>Temperatur 50°C</td>
<td>0,1562</td>
</tr>
<tr>
<td>Temperatur 70°C</td>
<td>0,1423</td>
</tr>
</tbody>
</table>
Untuk hasil data yield stress pada model Herschel Bulkley, hasil yang didapatkan memiliki kecenderungan yang sama dengan nilai yield stress pada model Power Law dan Casson yaitu seiring meningkatnya temperatur dan mengecilnya konsentrasi petis, nilai yield stress semakin menurun. Serupa dengan yang telah dijelaskan sebelumnya bahwa semakin besar temperatur maka pergerakan molekul pada fluida petis semakin cepat sehingga kemungkinan antar molekul untuk saling bertumbukan semakin besar dan hal tersebut lah yang menyebabkan nilai yield stress semakin menurun karena viskositas fluida petis yang semakin encer.

Penelitian lain yang menunjukan hasil yang sama adalah penelitian pada model Herschel Bulkley oleh (Marcottea, Hoshahilia et al. 2001) yang melakukan pengujian terhadap nilai yield stress xanthan gum. Hasil yang diperoleh yaitu nilai yield stress semakin menurun seiring mengecilnya konsentrasi xanthan gum dan seiring bertambah besarnya temperatur.

5.6 Analisa nilai E_a

5.6.1 Model Power Law

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th>E_a (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62858,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 55%</th>
<th>E_a (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23314,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 50%</th>
<th>E_a (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12471</td>
</tr>
</tbody>
</table>
Hubungan antara viskositas dan temperatur dinyatakan dengan persamaan Arrhenius yang memuat nilai Ea di dalamnya. Nilai Ea sendiri menunjukan sensitivitas viskositas fluida terhadap temperatur, besarnya nilai Ea menyebabkan perubahan viskositas terhadap temperatur yang semakin signifikan (Juszczak and Fortuna 2004).

Berdasarkan hasil dari model Power Law, nilai Ea menunjukan nilai yang semakin menurun seiring mengecilnya konsentrasi petis. Semakin banyak air yang ditambahkan ke dalam petis menyebabkan sensitivitas viskositas fluida petis terhadap temperatur semakin menurun dikarenakan semakin encernya fluida sehingga viskositasnya pun semakin kecil dan nilai Ea yang dihasilkan akan semakin menurun. Hal serupa ditemukan pada penelitian jus ceri oleh (Juszczak and Fortuna 2004) yang menghasilkan nilai Ea yang semakin menurun seiring mengecilnya konsentrasi jus ceri itu sendiri.

5.6.2 Model Casson

<table>
<thead>
<tr>
<th>Tabel 5.10 Hasil nilai Ea model Casson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petis 60%</td>
</tr>
<tr>
<td>Ea (J/mol)</td>
</tr>
<tr>
<td>9.249,3</td>
</tr>
<tr>
<td>Petis 55%</td>
</tr>
<tr>
<td>Ea (J/mol)</td>
</tr>
<tr>
<td>5.230,1</td>
</tr>
<tr>
<td>Petis 50%</td>
</tr>
<tr>
<td>Ea (J/mol)</td>
</tr>
<tr>
<td>3.915,4</td>
</tr>
</tbody>
</table>

Pada model Casson, nilai Ea memiliki kecenderungan yang sama dengan nilai Ea pada model Power Law yaitu nilai Ea menunjukan nilai yang semakin menurun seiring mengecilnya konsentrasi petis. Semakin encernya fluida petis akibat penambahan air yang dilakukan pada variasi konsentrasi petis menyebabkan daya ikat molekul-molekul lain seperti gula semakin lama semakin berkurang sehingga sensitivitas viskositas fluida petis terhadap temperatur menurun (Nindo et al. 2007). Semakin besar nilai Ea pada suatu fluida, menandakan bahwa semakin sensitif fluida tersebut terhadap perubahan temperatur (Haminiuk et al. 2006).
5.6.3 Model Herschel Bulkley

Tabel 5.11 Hasil nilai \(E_a\) model Herschel Bulkley

<table>
<thead>
<tr>
<th>Petis 60%</th>
<th>(E_a) (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.841,9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 55%</th>
<th>(E_a) (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.385,8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petis 50%</th>
<th>(E_a) (J/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.956,3</td>
<td></td>
</tr>
</tbody>
</table>

Dari hasil nilai \(E_a\) pada model Herschel Bulkley, dapat dilihat bahwa nilai \(E_a\) yang dihasilkan memiliki kecenderungan yang sama dengan nilai \(E_a\) pada model Power Law dan Casson yaitu nilai \(E_a\) menunjukan nilai yang semakin menurun seiring mengecilnya konsentrasi petis. Kecenderungan nilai \(E_a\) yang didapatkan seperti yang telah dijelaskan sebelumnya dikarenakan semakin banyak air yang ditambahkan ke dalam fluida petis menyebabkan fluida petis semakin encer sehingga sensitivitas viskositas fluida terhadap temperatur semakin berkurang (Nindo et al. 2007).

5.7 Akurasi Model

5.7.1 Power Law

Tabel 5.12 Hasil nilai \(R^2\) model Power Law

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Temperatur</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>30ºC</td>
<td>0,9978</td>
</tr>
<tr>
<td></td>
<td>50ºC</td>
<td>0,9996</td>
</tr>
<tr>
<td></td>
<td>70ºC</td>
<td>0,9971</td>
</tr>
</tbody>
</table>
Hasil yang didapatkan pada model *Power Law* di atas dapat dikatakan memiliki keakuratan yang tinggi karena nilai *R square* yang dihasilkan lebih besar dari 0.9. Umumnya suatu model dapat dikatakan memiliki keakuratan yang tinggi apabila nilai *R square* > 0.9. Dengan kata lain model *Power Law* cocok digunakan untuk menganalisa atau mengkarakteristik fluida petis.

5.7.2 Casson

Tabel 5.13 Hasil nilai *R²* model Casson

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Temperatur</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>30°C</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>50°C</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>70°C</td>
<td>0,9999</td>
</tr>
<tr>
<td>55%</td>
<td>30°C</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>50°C</td>
<td>0,9999</td>
</tr>
<tr>
<td></td>
<td>70°C</td>
<td>0,9987</td>
</tr>
<tr>
<td>50%</td>
<td>30°C</td>
<td>0,9996</td>
</tr>
<tr>
<td></td>
<td>50°C</td>
<td>0,9978</td>
</tr>
<tr>
<td></td>
<td>70°C</td>
<td>0,9991</td>
</tr>
</tbody>
</table>

37
Untuk model *Herschel Bulkey*, dapat dilihat bahwa nilai *R square* yang didapatkan lebih besar dari 0,9 dan lebih besar dari nilai *R square* pada model *Power Law*. Dari hasil tersebut dapat disimpulkan bahwa model *Herschel Bulkey* lebih cocok digunakan untuk mengkarakteristik fluida petis daripada model *Power Law* karena selain nilai *R square* yang lebih besar, *fitting* parameter pada model *Herschel Bulkey* lebih banyak daripada model *Power Law* yaitu terdapat nilai K_h dan σ_{oh} yang ikut diperhitungkan. *Fitting* parameter tersebut ikut mempengaruhi nilai *R square* pada model *Herschel Bulkey* sehingga lebih besar bila dibandingkan dengan model *Power Law*. Selain kelebihan model *Herschel Bulkey* yang memiliki *fitting* parameter yang lebih banyak, adapun kekurangan dari model ini yaitu lebih rumit dalam menentukan nilai K dan n bila dibandingkan dengan model *Power Law*.

Dari seluruh hasil nilai *R square* pada ketiga model yang telah didapatkan, model yang memberikan hasil paling akurat dan cocok untuk mengkarakteristik fluida petis adalah model *Casson*. Hal tersebut dikarenakan data yang diperoleh pada model *Casson* memberikan nilai R^2 paling mendekati, bahkan mencapai angka 1.
BAB VI KESIMPULAN

Kesimpulan yang diperoleh dari penelitian ini yaitu:

1. Petis merupakan fluida *time-independent*
2. Petis termasuk ke dalam fluida *shear thinning*
3. Nilai n tidak dipengaruhi oleh temperatur dan konsentrasi
4. Untuk setiap model, semakin besar temperatur dan semakin kecil konsentrasi, nilai K fluida petis semakin menurun
5. Untuk setiap model, semakin besar temperatur dan semakin kecil konsentrasi, nilai *yield stress* semakin menurun
6. Untuk setiap model, semakin besar temperatur dan semakin kecil konsentrasi, nilai *Ea* fluida petis semakin menurun
7. Model yang paling akurat untuk meng karakterisasi atau menganalisa fluida petis adalah model *Casson*
DAFTAR PUSTAKA

