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DARE TO SLACK

WHEN BRDS FLY IN THE RIGHT FORMATION, THEY NEED ONLY EXERT HALF THE EFFORT.
EVEN IN NATURE, TEAMWORK RESULTS IN COLLECTIVE LAZINESS.

www.despair.com
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Emergence

* Novel behavior
* Properties of the whole

* Cannot be predicted from properties of the
components that make up the system



MIND
(regulation)

BRAIN RELATIONSHIPS
(mechanism) (sharing)



—

.

The mind is an embodied and

relational process that regulates the
flow of energy and information.

The emergence of consciousness
may be intimately related to the
development of memory.

Memory is not a static thing, but an
active set of processes.

Our internal experiences are

constructive processes.

Experiences can shape not only
what energy and information enters
the mind, but also how the mind
processes that information.

Our social experiences can directly
shape our neural architecture.

Relationships and the embodied
brain are really part of one larger

system.

Interpersonal experiences appear
to have a direct effect on the
development of explicit memory.

survival.

Early experience shapes the
regulation of synaptic growth and

Interpersonal experiences continue
to influence how our minds function

throughout life.

Consciousness is the experience
of being aware, the internal state
of knowing that something is
happening in the present moment.
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The Pauli Exclusion Principle

e 1
Key: 1 Spin up (m, = g )

\153 Spin down (m; = -—%)

Allowed

,

It is impossible for two electrons of a
poly-electron atom to have the same
values of the four gquantum numbers: n,
the principal _quantum __number, ¢,
the anqgular _momentum  guantum
number, m, the magnetic guantum
number, and m,, the spin gquantum
number. For example, if two electrons
reside in the same orbital, and if their n, ¢,
and m, values are the same, then
their mg must be different, and thus the
electrons must have opposite half-integer
spin projections of 1/2 and —-1/2.



https://en.wikipedia.org/wiki/Quantum_number
https://en.wikipedia.org/wiki/Principal_quantum_number
https://en.wikipedia.org/wiki/Angular_momentum_quantum_number
https://en.wikipedia.org/wiki/Magnetic_quantum_number
https://en.wikipedia.org/wiki/Spin_quantum_number
https://en.wikipedia.org/wiki/Atomic_orbital
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Morowitz’s Three Claims

(1)  PEP 1s a nondynamical principle, but 1t
influences the dynamical behavior of
clectrons.

(1)  PEP has nothing to say about the
behavior of individual electrons.

(i1) PEP 1s unrelated to the other laws of
physics.



How does the
[mind] work ?

Data & state

Molecules/ Neurons/Synapses  Neuronal circuits ~ Systems of neurons Brain regions Representation  Behavior/Cognition
Genes T, + algorithms ‘




Data & state

Molecules/ Neurons/Synapses  Neuronal circuits ~ Systems of neurons Brain regions Representation
Genes e e e + algorithms

How does the [mind] work ?

"You, your joys and your sorrows, your memories and your ambitions, your sense of
personal identity and free will, are in fact re-merethan-the behavior of a vast assembly
of nerve cells and their associated molecules”

-- Francis Crick (Co-discover of the structure of DNA)

How does my favorite app work?

IC

; Algorithm
Transistor CPU/GPU g

application

User Interface




Implicit input

User input

Explicit output

Application

—> Context ————>

Implicit output <

The rest of the world



Measurement
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Sigmund Freud

The Human Mind

10%



Influ-Venn-Za

Who can catch which flu?

comobinati 1

ﬂw:“llu‘zr'na_g:?;lhl‘tlrun Influenza

Types B& C

N = neuraminidase
surf enzyme)

fatality rate horses

Additional design:Phillipa Thoma

informationisbeautiful.net



Perceptual Stage Cognitive Action Stage
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Culture is the widening of

the mind and of-r he spi
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Hundreds of
billions of dollars
arc spent every

year to control the @

public mind.
~Noam Chomsky




Data Science



The (Long) History of Data Processing

@ (...) Manual Data Processing
@ (1832) Punch cards @ (1990s) Data Mining / KDD

@ (1936) Turing Machine _
@ (1944) First IBM Computers (SSEC) O (1990s) Complex-Event Processing

@ (1945) Von Neumann Architecture @ (1990s) Data Stream Processing

@ (1950s) Sort & Search Algorithms @ (1990s) Social Network Analysis

@ (1950s) Heuristics Methods @ (1998) The Term “Big Data” was first coined
@ (1936) Pattern Recognition by John Mashey

@ (1951) The First Neural Network Machine @ (1999) Internet of Things

@ (1955) Concerns on data explosion

by Fremont Rider, Wesleyan University Librarian ® (2001) Volume, Velocity, Variety

by Doug Laney
:{1 960s) DBMS _ @ (2001) “Data Science” by William Cleveland
(1960s) Data Analysis Methods @ (2004) MapReduce

(Bayesian, Time Senes, Stochastic, )
© (1968) Knuth — The Art of Computer Programming @ (2009) No-sQL

@ (1970s) Relational DBMS @ (2011) Global Information Storage
@ (1974) 3QL Capacity grows at 25% annually
© (1975) First PC (MITS Altair 8800) by Martin Hilbert, Priscila Lopez

Pre- 1900- 1960-



How Big is Big?

Global Information Storage Capacity m’”,;““m

in optimally compressed bytes

- . /4 DIGITAL
DIGITAL % | STORAGE

"heginning
of the digital age”
50%

- PC hard disks: 4£.5 %

% digital:
1% 3% 25 % 94 %

Soumrce: Hilbert, M., & Loper, P, [2011). The World™s Technological Capacity to Stare, Commiunicats, and
Comgute Infarm ation. Science, 332 BOZ5), 60 —65, bitpeSfunw marinhilbert.net Ao rdinoCspacity. i)
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VARIETY ~  VERACITY

DIFFES;E%}'\{‘?RMS UNCERTAIRITY OF

THE NEW YORK STOCK AS OF 2011, THE GLOBAL SIZE OF

EXCHANGE CAPTURES L T 1IN3

: 150 EXABYTES BUSINESS LEADERS

(161 MILLION GIGABYTES) DON T TRUST THE
INFORMATION THEY USE TO

DURING LACH SISSION MAKE DECISIONS

WY 2016, 1T 15 PROMCTED THERE 30 BIlUON PIECES OF
WILL BE CONTENT

ARE SHARED ON FACERBOOX
EVIRY DAY

-4 BILLION HOURS OF VIDED
BT Mo T ouTURE IN ONE SURVEY WERE UNSURE OF

HOW MUCH OF THEIR DATA WAS
400 MILLION TWEETS

INACCURATE
ARE SENT PER DAY BY ABOUT
200 MILLON MONTHLY ACTIVI
USERS POOR DATA QUALITY
AMMOST 3.5 CONNICTIONS COSTS THE US ECONOMY

PAR PERSON ON TANRTH AROUND
WORLD POPULATION BY 2014, IT"S ANTICIPATED

7 BRLION LS ,
MODERN THERE WILL BE

CARS HAVE 420 MILLION
AOTO R [V, WEARABLE WIRELESS
THAT MONITOR | LI mmuss

ITEMS SUCH AS FUEL LEEL AND TIRE
PRENSUNE

https://www.slideshare net/PresentationLoad/big-data-51890676




The Taxonomy of Data Processing




Data Structures Swucnrad Dat
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Belmtion

MNetwork Model DB
Graph DB ‘
P e.g., CODASYL (1969)

Around 80-90% of all
potentially usable business
information may originate in
unstructured form
[Merill Lynch, 1998]

- Hierarchical Model DB

Document DB e.g., IBM IMS (1969)

?
»
i‘\




Other Data Structures

Spatial / Geospatial Data

Spatio-temporal Data

- e.g., Moving Objects

Biological Data

1000 Genomes Project = >200 Terabytes
https://aws.amazon.com/1000gsnomes/

Million Human Genomes project = 77?



Data Stream

* ...is an ordered sequence of instances that in many
applications can be read only once or a small
number of times using limited computing and
storage capabilities™

* Data Stream Processing Applications:
* |oT applications
* Live datamart
* Pattern mining on live data




Data Stream Characteristics

* Continuous flow of data
* Infinite length

* not just BIG but “UNLI MIT T

* impractical to store all data

* Examples:

Call Detail Records (CDR)
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Data Stream Processing

An example of a typical data stream processing flow

®
oo o N
TIX ~ -
Processing (CEP) Mining =
Data Streams Aggregated
Correlated Knowledge
|[ Jl ] Events f ,l ll
O windowing 0 Discovering stream
O Aggregating patterns
O Correlating O Prediction



Digital vs Analog World

Event detection from twitter

C.'_':— Probabilistic model
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Deep Learning
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Big Data
Correlation vs Causation

Is correlation more important than causation?

Correlations play an important role as heuristic devices
[but] have to be further analyzed [. . .] to assigh them a
meaning”

The correlations may not tell us precisely why
something is happening, but they alert us that it is
happening.



Big Data
Correlation vs Causation

Thomas Kuhn:

Anomalies, by definition, For such discoveries to
occur, establishing that there is something that does
not match our expectations is not enough. We have
also to find out what it is. This process does not arise
directly from data or numbers, but rather from a
change in how we look at them, and it involves a
reassessment of our beliefs and methodologies.



Big Data
Correlation vs Causation

“Big Data, distributed computing and sophisticated
data analysis all played a crucial role in the discovery of
the Higgs boson [. . .] But the discovery of the Higgs
boson was not data-driven.”

“The data-driven approach constitutes a novel tool
for scientific research. Yet this does not imply that
it will supersede cognitive and methodological
procedures. . ."



Some Applications

How does the Brain solve visual
objective recognition
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Natural images vs artificial vision system

269 images
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The phenomenon of synchronization

Circadian rhythms

Electrical generators

Heart, intestinal muscles
Menstrual cycles

Fireflies

Applause (esp in Eastern Europe)



neuronal spiking
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The dynamic emergence of coherent physiological activity, such as phase-locked
high-frequency electromagnetic oscillations,
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Fig 1. D-PLACE links cultural information to language classifications and phylogenies (a2, c) and to geographic locations and environmental
features (b, d). This allows users to consider the relative influence of cultural ancestry, spatial proximity, and environment on dive rse cultural
practices. For example, panels a and b illustrate variation among societies in their dependence on fishing relative to other subsistence
activities, based on data from the Ethnographic Atlas (EA) [1 1-15] and the Binford Hunter-Gathererdataset [1£, | 7]. Panels c and d highlight
diversity in the most common economic transaction at marriage, based on data from the EA. In addition to providing global results, D-PLACE
allows users tofocus a search on a particular geographic region or linguistic family. Here, results for societie s speaking Pama-Nyungan
languages (a, b) or Sino-Tibetan languages (c, d) are magnified and outlined in black boxes on the global tree and map.



8. Exploratory

How ara faatures distributed across socielias?
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b. Regression Analysis
What pradicts patterns of cultural diversity?
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d. Transformation
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f. Mode and Tempo

Howy and whian do features diversify?



Political Blogs

v

Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,
and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]



Texting

Number of messages
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Automated Detection of Deceptive Language-Action Cues
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URBAN
TRAFFIC

Heterogeneity Sparse multi-sensor
« Spatial and Temporal

Congestion Level
Topology

Modes of transport
Sensing equipment

Pictures provided by
Armando Bazzani (Un. of
Bologna)
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