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Abstract 

Proper bonding between adjacent pavement layers is very important to ensure good pavement performance. 
Manual torque bond test is known to be one of the tests to determine mechanical properties of bond between 
adjacent pavement layers. However, the test has several drawbacks that may affect the accuracy of results. 
This paper is focused on the development a mechanically controlled automatic torque bond test in order to 
eradicate the drawbacks associated with the manual torque bond test. A trial test and calibration of the newly 
developed apparatus was performed to ensure the accuracy of results. The nominal loading rate of the manual 
torque bond test performed at 600Nm/min was found to be lower than the target loading rate, leading to a 
lower measured shear strength compared to that of the automatic torque test. It was also found that the 
appearance of lateral shear would not significantly affect the shear strength. 
 
Keywords: bond test, torque, shear, loading rate. 
 

Abstrak 

Ikatan yang tepat antara lapisan perkerasan yang berdekatan sangat penting untuk memastikan kinerja 
perkerasan yang baik. Uji ikatan torsi secara manual dikenal sebagai satu di antara uji-uji untuk menentukan 
sifat mekanis ikatan antara lapis-lapisan perkerasan yang berdempetan. Namun uji  ini memiliki beberapa 
kelemahan yang dapat mempengaruhi akurasi hasil yang diperoleh. Makalah ini membahas pengembangan 
uji ikatan torsi otomatik yang dikendalikan  secara mekanis dengan tujuan untuk mengurangi kelemahan 
yang terkait dengan uji ikatan torsi secara manual. Pengujian pendahuluan dan kalibrasi terhadap alat yang 
baru dikembangkan dilakukan untuk memastikan akurasi hasil yang diperoleh. Laju pembebanan nominal 
pada uji ikatan torsi secara manual, yang dilakukan  pada 600Nm/menit, memberikan hasil yang lebih rendah 
daripada laju pembebanan yang diinginkan, sehingga menghasilkan kekuatan geser yang lebih rendah 
dibandingkan dengan hasil uji torsi otomatis. Hasil penelitian ini juga menunjukkan bahwa  geser lateral 
tidak mempengaruhi kekuatan geser secara signifikan. 
 
Kata-kata Kunci: uji ikatan, torsi, geser, laju pembebanan. 
 
 
INTRODUCTION 

Most of pavement design and evaluation techniques assume that adjacent pavement 
layers are fully bonded together and no displacement is developed between them. The bond 
between layers is very important to ensure that those layers work together as a composite 
structure to withstand traffic and environmental (e.g. temperature induced) loadings. To 
achieve that condition, a thin film of bituminous bond coat (or tack coat) is usually applied 
at the interfaces. However, full bonding is not always achieved and a number of pavement 
failures linked to poor bond condition have been reported (Shaat, 1992; Lepert et al., 1992; 
Hachiya and Sato, 1997; Raab and Partl, 1999; Sutanto, 2004).  
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Theoretical research showed that poor interlayer bond condition affects stress/strain 
distributions within a pavement structure and reduces the capability of the pavement to 
support traffic and environmental loadings (Shahin et al., 1987; Al Hakim, 1997; Hachiya 
and Sato, 1997; Kruntcheva et al., 2000; Romanoschi and Metcalf, 2001). When horizontal 
loadings exist, poor bond condition at the interface beneath the surfacing could cause 
slippage cracking or horizontal permanent deformation at the surfacing layer. Poor load 
transfer from the surfacing to the layer underneath, caused by the poor bond condition, 
leads to a high stress concentration within the surfacing material. Slippage cracking or 
horizontal permanent deformation will initiate at the top of the surfacing when the 
surfacing material is unable to withstand the induced horizontal stresses.  

The review of theoretical investigations on the effect of bond on pavement 
performance showed that bond between layers is an important component of the whole 
pavement structure and proper bonding is essential to ensure good pavement performance. 
Because of that, the determination of mechanical properties of bond at the interface 
between layers is of significant importance.  

Manual torque bond test is one of the tests to determine mechanical properties of 
bond at the interface between layers (Sutanto, 2009). The manual torque bond test has been 
widely used in the UK because it is included as a compulsory test in the certification of 
thin surfacing course systems in the UK (British British Board of Agreement, 2000). The 
test is performed manually by twisting the top of a (100 ± 5) mm diameter core specimen 
using a handheld torque wrench at a constant rate, inducing a twisting shear failure at the 
interface.  

For practical reasons, the manual torque bond test is generally limited to the 
interface between thin surfacing and the lower layer material and is typically undertaken 
in-situ. Choi et al. (2005) developed a laboratory-based manual torque bond test that 
allows the test to be undertaken in a more controlled environment (Figure 1). This 
laboratory-based manual torque bond test is able to test the shear strength of an interface 
other than the interface below the surfacing by taking a full depth core and cutting the core 
specimen at the positions above and below the interface of interest. Testing at various 
temperatures is also possible by conditioning the core specimen in a temperature controlled 
cabinet. 

The testing procedure of the manual torque bond test in the guidelines document 
SG3/98/173 (British British Board of Agreement, 2000) requires the torque is applied 
manually at a constant torque rate so that failure occurs in (60±30) seconds. This procedure 
results in difficulty in controlling the torque rate, because the torque strength is unknown 
and the value of the torque strength is also affected by the torque rate. To avoid the 
aforementioned difficulty, Choi et al. (2005) used a constant torque rate of 600Nm/minute, 
which was achieved by synchronising the movement of the torque dial gauge with the 
second hand of an analogue clock. Babtie (2000) also found it difficult to keep the 
application of torque parallel to the interface resulting in axial bending on the specimen. 
Additionally, it was reported that considerably high force is needed to twist off the 
surfacing and that sudden failure could lead to the risk of strains and falls to the operator. It 
is also interesting to note that the manual torque bond test is applied without lateral support 
at the top part of the specimen (see Figure 1). This condition may cause the appearance of 
lateral shear stress acting at the interface in addition to the interface shear stress induced by 
the torque. 
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Figure 1 Schematic Diagram of the Laboratory Based Manual Torque Bond Test Developed by Choi Et Al 

(2005) 
 
To eradicate the previously mentioned issues related to the manual torque bond 

test, a mechanically controlled automatic torque bond apparatus was developed in this 
research study. Although quite similar to the apparatus developed by Diakhaté et al. 
(2007), the apparatus developed in this research study uses a rack and pinion mechanism 
and is capable of transferring either tensile or compressive force to generate negative or 
positive torsional load. The automatic torque bond apparatus developed in this study was 
manufactured at the Civil Engineering Department, University of Nottingham. 
 
DESIGN AND MANUFACTURE OF THE APPARATUS 

The loading machine to be used in this study was an INSTRON servo-hydraulic 
testing machine. It comprises of a temperature controlled cabinet with a range of 
temperatures between -5 ˚C and 40˚C, a 100 kN servo hydraulic actuator, an axially 
mounted load cell and a Linear Variable Differential Transformer (LVDT). Because the 
testing machine is only capable to apply a vertical load or displacement, a simple rack and 
pinion mechanism is used in the automatic torque bond apparatus (Figure 2) to transfer the 
applied load or displacement and convert it into a torque or rotation respectively. Because 
the rack and pinion mechanism is able to transfer either tensile or compressive force to 
generate negative or positive torsional load, the apparatus is also able to perform a cyclic 
zero-mean torsional load. The force and linear displacement of the rack are measured using 
the load cell and LVDT incorporated in the testing machine. 

The torque, torque rate, angular rotation and rotation rate are calculated using the 
following equations:  

RFTFRT
..

, ==                           (1) 

RR

.
.

, δθδθ ==                               (2) 
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The cylindrical metal platens glued at both ends of the specimen are bolted to the 
automatic torque bond apparatus and a thread sealant is used to ensure that the bolts do not 
loosen during testing. The specimen and the apparatus are then placed inside a 
temperature-controlled cabinet and attached into an axial testing machine. To perform 
testing at a constant torque rate, a constant vertical force is applied into the rack of which 
the rate can be calculated using equation (1). For testing at a constant rotation rate, the rack 
is subjected to a constant vertical displacement rate calculated using equation (2). The 
vertical force and its corresponding displacement are measured using a load cell and an 
LVDT incorporated into an axial testing machine respectively.  The applied torque is 
calculated from the measured vertical force using equation (1), while the corresponding 
rotation is calculated from the measured vertical displacement using equation (2). 

After the automatic torque bond apparatus (Figure 2) had been manufactured, it 
was attached to the testing machine to calibrate the torque and its corresponding rotation 
and to check whether any play and/or friction existed within the system that may affect the 
accuracy of the results. The applied torque was calibrated by attaching a torque meter into 
the apparatus. A number of vertical forces were applied and the resultant torque readings 
from the torque meter were recorded. The applied torques were calculated from the applied 
vertical forces using equation (1) and then calibrated with the readings from the torque 
meter. The rotation of the pinion gear was calibrated by applying vertical displacements 
into the rack and the corresponding rotations of the metal coupling (shown in Figure 2), 
connected by a shaft into the pinion gear, were measured using an angle meter. The applied 
rotations were calculated from the applied vertical displacements using equation (2) and 
then calibrated with the rotations of the metal coupling. 

The presence of any play within the system was checked by performing trial tests 
on a number of 14 mm Stone Mastic Asphalt over 20 mm Dense Bituminous Macadam 
(SMA/20DBM) specimens of 100 mm nominal diameter using two different loading rates 
(600 Nm/min and 180˚/min) at a temperature of 20˚C. Six identical tests were carried out 
for each test condition. Following the trial tests, a slip was found in the attachment of the 
rack to the actuator and a small modification to the attachment was carried out. A slight 
play was also found between the rack and the pinion gear and a support was then added at 
the back of the rack in order to eliminate the play. The presence of any friction within the 
bearing system was checked by applying a set of displacements into the rack without any 
specimen placed in the apparatus and monitoring the resistant forces. It was found that the 
resistant forces were less than 0.04 % of the of the maximum design load, which was 
considered very small and not significant. 

It is interesting to discuss that for the trial testing at 180˚/min, some of the 
specimens failed at the bottom part of the 20DBM binder course. A visual observation on 
the 20 DBM layer revealed that its bottom part appeared to be highly voided. The air void 
content of the 20DBM was then measured by slicing a number of 20DMB cores (60 mm 
thick) into 3 parts (bottom, middle, and top) and it was found that the air void content at 
the bottom part was higher than that at the middle and upper parts. The relatively high air 
void content at the bottom part of the 20DBM appeared to weaken the torque strength of 
the material. Trimming the specimen at 20 mm below the interface of interest to discard 
the relatively high voided bottom part was found to successfully prevent failure within the 
asphalt layer. Besides preventing failure within the relatively high voided bottom part of 
the specimen, the trimming at 20mm below the interface was chosen in order to better the 
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simulate the manual torque bond test because the guidelines document SG3/98/173 (British 
Board of Agreement, 2000) require the specimen to be held at 20 mm below the interface. 
The finding regarding the relatively low structural integrity of the relatively high voided 
bottom part of the specimen also indicates that the torque bond test appears to be not 
suitable for a double layered specimen containing a highly voided asphalt layer (e.g. 
porous asphalt) because the specimen may fail within the asphalt layer rather than at the 
interface between the adjacent layers. 
 
COMPARISON BETWEEN MANUAL AND AUTOMATIC TORQUE BOND 
TESTS  

After the automatic torque bond apparatus had been developed, it was necessary to 
compare the results obtained from the automatic torque bond test to those of the manual 
torque bond test. A series of manual and automatic torque bond tests were performed on 
SMA/20DBM and 10 mm proprietary Thin Surfacing over 20 mm Dense Bituminous 
Macadam (TS/20DBM) specimens of 100 mm nominal diameter. The tests were performed 
at a target torque rate of 600 Nm/min and temperature of 20°C.  Five identical tests were 
undertaken for each material combination and test equipment. 

Figure 3 shows a comparison of the nominal shear strength from the manual and 
automatic torque bond tests. The nominal shear strength is calculated from the measured 
peak torque using the following equation: 

3

2
R
T

π
τ =                             (3) 

with τ is the shear strength, T is the torque and R is the radius of the specimen. Because the 
torque rate is considered to be less accurate, the results from the manual torque bond test, 
as expected show higher Coefficients of Variation (COVs) than that shown by the results 
from the automatic torque bond test of the corresponding material combination. It is 
interesting to note that the results of the automatic torque bond test are (20-30) % higher 
than the results of the manual torque bond test. The difference was thought to be due to 
several drawbacks associated with the manual torque bond test, namely inaccurate torque 
rate, the appearance of lateral shear due to the absence of a lateral support at the top part of 
the specimen, and axial bending on the specimen due to the application of a torque that is 
not parallel to the interface.  

To investigate the accuracy of the applied torque rate in the manual torque bond 
test, nominal torque rate is plotted against nominal shear strength from the manual torque 
bond test and the plot is presented in Figure 4. The nominal torque rate of the manual 
torque bond test is defined as the measured peak torque divided by the recorded time to 
failure. Figure 4 shows that most of the nominal torque rates from the manual torque bond 
test are below the target torque rate of 600 Nm/min. The figure also demonstrates that the 
nominal shear strength increases as the nominal torque rate increases. The trends of the 
data demonstrate that applying a nominal torque rate of 600 Nm/min would give nominal 
shear strength values of approximately 1.262 MPa for the TS1/20DBM specimen and 
approximately 1.296 MPa for the SMA/20DBM specimen. It should be noted that the 
actual torque rate could fluctuate during the test because there is a possibility that the 
operator would apply a high torque rate at the beginning of the loading and that the torque 
rate would gradually decrease as the force needed to induce the torque gradually increased. 
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Figure 3 Comparison between Manual and Automatic Torque Bond Tests 

 
 

 
Figure 4 Nominal Torque Rate Versus Nominal Shear Strength Plot from the Manual Torque Bond Test 

 
Because there is no lateral support at the top part of the specimen in the manual 

torque bond test (see Figure 1), lateral shear would appear at the interface (Figure 5), in 
addition to the measured torque. To investigate the significance of the lateral shear in the 
manual torque bond test, nominal lateral shear was calculated from the measured peak 
torque using the equation presented Figure 5. The length of the twisting arm of 0.8 m was 
used in the calculation. The results presented in Table 1 demonstrate that the values of the 
nominal lateral shear are very small compared to the nominal shear strengths presented in 
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Figure 3. Considering the variability of nominal shear strengths shown in Figure 3, the 
appearance of lateral shear would not significantly affect the shear strength. 

 
 

 
Figure 5 Lateral Shear Acting at the Interface 

 
 

Table 1 Nominal Lateral Shear in the Manual Torque Bond Test 

Specimen Peak Torque (Nm) Nominal Lateral Shear 
(MPa) 

TS1/20DBM-1 160 0.0066 

TS1/20DBM-2 190 0.0079 

TS1/20DBM-3 159 0.0066 

TS1/20DBM-4 220 0.0091 

TS1/20DBM-5 130 0.0054 

SMA/20DBM-1 220 0.0091 

SMA/20DBM-2 229 0.0095 

SMA/20DBM-3 230 0.0095 

SMA/20DBM-4 201 0.0083 

SMA/20DBM-5 260 0.0108 

 
 
CONCLUSIONS 
The following key points can be derived from the study: 
1. At a constant torque rate of 600 Nm/min, the shear strength measured using the 

automatic torque test is higher than the shear strength measured using the manual 
torque bond test. 

2. The nominal loading rate of the manual torque test performed at 600Nm/min has 
been found to be lower than the target loading rate, hence leading to the lower 
measured shear strength compared to the automatic torque test. 

3. The results of the manual torque test on SMA/20DBM and TS1/20DBM specimens 
performed at 600 Nm/min and using a twisting arm of 0.8m in length show that the 
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values of nominal lateral shear are very small and not significant compared to that of 
the nominal shear strength. 
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