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Abstract  
 

Selecting cutting tools for a milling process is crucial to determine the optimal cut. Minimizing milling 
process cost is one of the most common optimization objectives, and thus it determines the best cutting 
tool to be used. However, the chosen cutting tool might not bring the optimal result based on the tool's 
cost. Therefore, a valuation method based on the process and cutting-tool costs results were developed 
and analyzed to improve the cutting tool selection process.  A specific rough-milling operation was 
entered to the quick cost-estimation and optimization application, and several cutting tools were 
compared based on the process cost by each tool. Using a weight-based analysis on both process-cost 
and tool-cost changes the cutting-tool options' initial rankings. This study showed that using different 
weight ratios altered the order of the most suitable cutting tools. The study found that using different 
weight ratios between each cost component results in different tool ranking results and changes the 
cutting tool selection. Another finding revealed in this study is how deflection constraint affected the rank 
of cutting tool selection. Thus, knowing the proper limit of deflection is crucial to validate the cutting tool 
selection outcome. 
 
Keywords: cutting tool selection, milling optimization, cutting tool valuation, cost estimation, cutting tool 
deflection 

 
 
 

Introduction 
In machining, selecting a cutting tool is 

crucial in determining the workpiece's finished 
surface and the process cost and time. A cutting 
tool is a variable that determines the optimal 
cutting parameters for a machining process. In 
this case, optimality depends on the objectives. 
Optimization objectives could vary, and 
therefore the cutting parameters such as feed, 
cutting speed, depth of cut and other cutting 
parameters relied on that objectives. The most 
common optimization objective is production 
cost minimization (Lee et al., CDCD). Apart from 
minimizing the overall costs, the optimization 
objective could also focus on minimizing 
production time (Chen et al., CDGH), energy 
consumption (Ma et al., CDGJ), and even a 
combination between objectives (Wang et al., 
CDGL). Moreover, optimization could use a lot of 

techniques other than simple linear modeling. 
Most modern techniques use probabilistic 
models to reduce process time while holding a 
high degree of accuracy. Several statistical 
methods could be implemented to optimize 
machining processes, such as the Taguchi 
model (Ribeiro et al., CDGJ) and response 
surface methodology (Badiger et al., CDGL). 
Other probabilistic methods such as an artificial 
neural network (Abbas et al., CDGH), genetic 
algorithm (Deepan Bharathi Kannan et al., 
CDGH), Nelder-Mead simplex (Lee et al., CDCD), 
and even fuzzy logic (Shankar et al., CDGL). 
Other than probabilistic methods, deterministic 
methods could also determine optimality, such 
as the simplex method and combinatorial 
optimization (Blum et al., CDGV; Dai et al., CDGJ; 
Hazimeh & Mazumder, CDCD).  
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However, optimization itself in the machining 
process is constrained by several aspects. The 
first factor that limits the optimization boundary 
is the cutting power needed for the cutting 
process. The spindle motor power mainly limits 
the cutting power of a machining process. The 
cutting power should not exceed the motor 
power with specific efficiency to prevent burnout 
and other damages (Groover, CDGV; 
Stephenson & Agapiou, CDGV; L. Zhou et al., 
CDGJ). Other than cutting power, a constraint for 
optimality also lies on the finished surface. A 
finished surface is determined by the cutting 
feed and the tool nose radius. That is why to 
reach specific surface roughness, a proper feed 
and cutting tool is needed. Besides surface 
roughness and cutting power, deflection 
remains the most significant constraint for the 
cutting tool. Since the cutting tool determines 
the cutting parameter possibility, the optimal 
result also changes if the cutting tool is different. 
Cutting tool deflection could damage the cutting 
tool itself, harm the workpiece, and make the 
cutting process inaccurate. These constraints 
heavily depend on the cutting tool specification, 
where it shows the range of the cutting 
parameters and determines the optimal 
parameters. Therefore, this optimization relies 
on how to choose the right cutting tool. The 
selection of a cutting tool is not only based on 
the desired specific process and materials but 
also on the cutting parameters and the 
constraints that result from the optimal cutting 
conditions it may provide.  Choosing a cutting 
tool would not be complicated when only a few 
options of cutting tools are available. Still, when 
choosing from a plethora of available cutting 
tools, a more accurate method is needed to 
determine each cutting tool's final process 
result. A modern approach such as artificial 
intelligence (Saranya et al., CDGL) and deep 
learning (G. Zhou et al., CDGH) is implemented to 
choose the machining process's best cutting 
tool.  

Optimization that leads to choosing the right 
cutting tools and setting the optimal cutting 
parameters might already be systemized for big 
and capital-intensive workshops, primarily when 
those big workshops use CNC machines to help 
optimize production. However, these 
competitive advantages do not arise in small to 
medium workshops with no CNC machines. 
Most of them still use conventional machines, 
which makes it harder to optimize the cutting 

process. These workshops need a proper 
cutting-tool selection system to determine the 
optimal cutting parameter (Ji et al., CDGL). 
Therefore, such a problem has motivated the 
authors to develop a quick cost-estimator 
application that can help small to medium 
workshops to obtain optimized results, cutting 
parameters, and cutting tools to be used.  

Specifically, the application's primary 
objective is to estimate the minimal production 
cost in a conventional milling machine and 
provide the detailed optimal cutting parameters 
and the most suitable cutting tool for the milling 
operation. This application also shows each 
appropriate cutting tool's results and cutting 
parameter so that operators could have options. 
However, even though the milling process cost 
determines the optimal cutting tool, some 
problem still lingers. The cutting tool that shows 
the minimal result sometimes has the highest 
initial and maintenance costs. Although each 
cost that incurs in overall tool cost is already 
considered in the process cost estimation, it 
seems that a more detailed study is needed to 
compare each cutting tool's cost component 
and the process cost. 

Moreover, when a deflection constraint is 
applied, the optimal cutting tool might change to 
a different one. This study aims to improve this 
cutting tool selection by comparing each cutting 
tool using a weighted comparison and 
valuation. This work's findings should help small 
and medium workshops make better cutting tool 
selection decisions for milling. 

 
Methods 

This research method uses a cost estimation 
application to determine the minimal cost and 
cutting parameter for a facing milling process 
after entering all the base input for the program, 
including the deflection constraint. After having 
the optimal result of each cutting tool, the 
deflection limit is lifted to see the after result. 
Each cutting tool is then compared and valued 
to see whether the tool selection truly reflects 
the minimal cost. Thenceforth, the cutting tool 
with deflection limit is removed and finalizes the 
result. Figure G below briefly explains the 
research method. 



 
DOI: https://doi.org/10.26593/jrsi.v11i1.5023.23-34  
 

 25 

 
Figure >. Research methodology 

The initial input of the research is a roughing-
only face milling operation. The process only 
cuts one workpiece dimension and does not in-
clude the finishing process since roughing and 
finishing cutting tools might differ. The input for 
the quick cost application is shown in Table G 
below. 

 
Table >. The initial input for the quick cost estimation 
application 

Roughing 
Face Milling Inputs 

Material C[\] Brass 
Initial Dimension []] x ^_] x `a_ mm 
Final Dimension `b] x ^_] x `a_ mm 
Max. Deflection ].` mm 

Operating Cost Rate \^a.]`\ IDR / min. 
Maximum Power e kW 

 
Although the cost estimation method for ma-
chining processes might vary (Atia et al., CDGJ; 
Conradie et al., CDGV; Kasim et al., CDGV), the 
application uses a basic cost equation for mill-
ing processes. The algorithm uses Stephenson 
and Agapiou (CDGV) and Groover (CDGV) to split 
milling costs into three variables: machining 
cost, tooling cost, and non-productive cost. 
 
𝐶! = 𝐶". 𝑇# +

$!
$
(𝐶". 𝑇% + 𝐶&) + 𝐶". 𝑇'  Eq. G 

Where: 
𝐶! : Milling Process Cost [IDR] 
𝐶" : Operating Cost Rate [IDR / min.] 
𝑇# : Machining Time [min.] 

𝑇   : Cutting Tool's Life [min.] 
𝑇%  : Cutting Tool Loading/Unloading Time [min.] 
𝐶&  : Cutting Tool Cost [IDR] 
𝑇' :  Workpiece Handling Time [min.] 

 
Equation G above calculates the cost incurred 
for a milling process. According to Masood et al. 
(CDGV), the cutting tool's life should be adjusted 
by how much the tool is used in the machining 
process, and it is shown in equation G that the 
cutting tool cost is multiplied by the usage of the 
tool's life. The tooling cost indicates the cutting 
tool's life used for a process and the cutting tool 
change time. There are nine face-mill (three 
cases with three different inserts) and three 
end-mill available for this roughing process. The 
cutting tool cost equation for both types of tools 
are shown below: 
 
 𝐶& =

("
)#
. 𝑛&                  Eq. C 

Where: 
𝑃* : Insert Initial Cost [IDR] 
𝑛+ : Number of Insert's Edge  
𝑛& : Number of Face-Mill Teeth  
 

 𝐶& =
($
)%
+ 𝑇,. 𝐶,                  Eq. e 

Where:  
𝑃& : End-Mill Initial Cost [IDR] 
𝑛, : Allowed Number of Grinding  
𝑇, : Tool Grinding Time [min.] 
𝐶, : Tool Grinding Cost [IDR / min.] 
 
Equation C and equation e represents face-mill 
cost and end-mill cost, respectively. There is 
also a need for assumptions in grinding time 
and grinding cost since there is no specific data 
for the tools regarding the re-grinding time and 
cost. The grinding cost is assumed to be GD,DDD 
IDR per minute, and the grinding time is consid-
ered to be around e minutes for all end-mill tools 
in this study. The grinding time is considered the 
same throughout all cutting tools since the 
workpiece is the same. Grinding itself have their 
own equations and to simplified the paper, it is 
assumed to have a grinding cost of IDR eD,DDD 
in total. Even though grinding is allocated when 
the tool is dull due to multiple processes, in this 
case, we assume that the grinding cost is to be 
due immediately after this case. Another as-
sumption is also needed in equation G, where 
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the part handling time for the workpiece and the 
tool change time is around e minutes.  

Several studies, such as in Duan et al. 
(CDGV); Soori et al. (CDGJ); and Moges et al. 
(CDGL), use specific equations to model the tool 
deflection and chatter based on several cutting 
forces. However, the tool deflection in this study 
uses a basic beam deflection equation shown 
below. 

 

𝛿 = 	 -&.%&
'

/.0.1
                      Eq. f 

 
Where:  
𝛿  : Cutting Tool Deflection [mm] 
𝐹2 : Cutting Force [N] 
𝐿2 : Cutting Tool Length [mm] 
𝐸  : Young's Modulus [GPa] 
𝐼   : Area Moment of Inertia [mm!] 
 
Initially, the maximum cutting deflection limit is 
appointed in Table G, where it is D.G mm. The 
young's modulus shows that the workpiece ma-
terial also gives an effect on the deflection.  

Deflection gives effect on the selection pro-
cess by filtering result that has over the ap-
pointed maximum deflection. Moreover, the cut-
ting force in the equation above consists of a vi-
tal cutting parameter such as depth of cut and 
width of cut. The equation for cutting force is 
shown below. 
 

𝐹2 = 𝜏. 𝑑.𝑤	                      Eq. h 
 
Where:  
𝐹2 : Cutting Force [N] 
𝜏  : Shear Strength [MPA] 
𝑑  : depth of cut [mm] 
𝑤 : width of cut [mm] 
 
The shear strength depends on the workpiece 
material, which in this case is brass. Other than 
cutting force, the area moment of inertia is also 
one of the factors leading to deflection, and it is 
shown below. 
 

𝐼 = 𝜋
!
. 𝑅𝐶4	                      Eq. V 

 
Where:  
𝐼   : Area Moment of Inertia [mm!] 
𝑅6 : Tool's Diameter [mm] 
 
The area moment of inertia solely depends on 
the cutting tool's diameter even though deflec-
tion is used only for a limiter in the application, 

equation h and equation V show many essential 
variables that effects the selection process, 
such as the depth and width of cut that will de-
termine the toolpath and eventually the process 
cost . 

The quick cost estimation system uses combi-
natorial optimization, which iterates all possible 
combinations of cutting parameters (depth of 
cut, width of cut, feed, rotational speed). After 
gaining all structured data results, the program 
exhaustive the exploration (Durieux et al., CDGL) 
find the optimal solution, which is the cheapest 
process cost. After having the optimal outcome 
for one cutting tool, the application does the 
same algorithm to the other available cutting 
tools. It determines the most suitable cutting 
tool for the process. Each tool's result will then 
be compared using a weighted ratio of cutting 
tool cost and the process cost. The reason is 
that the optimal cutting tool may result in a 
cheaper process cost but have an expensive in-
itial cost without having a significant difference 
in quality. The equation used for the weight ratio 
is shown below.  
 
𝑅7 = 	𝑊. 𝐶& 4

$!
$
5 + (6 −𝑊). 𝐶!  Eq. J 

Where:  
𝑅7  : Weighted Result [IDR] 
𝑊    : Weight [%] 
 
The challenging part is on determining the 
weight for each variable. The weight helps to ra-
tionalize the value between tooling cost and the 
result (process cost). Different weight ratios will 
bring another solution to the equation. It is not 
clear whether which element of cost is the most 
important or impactful. Therefore, the weight ra-
tio should be JD-eD, heavier on the tooling cost, 
hD-hD for both variables, and eD-JD heavier on 
the process cost result. The first is that the 
weight for the tooling cost is heavier since each 
tool wants to be compared. So, the weight will 
be JD% of the machining tooling cost and eD% 
of the process cost. The second scenario is hD-
hD between tooling cost and process cost to see 
each result's difference. The last scenario is 
somewhat eligible when a workshop wants to 
have the lowest possible process cost without 
worrying about the cutting tool cost.  

After getting the weighted results, the equa-
tion below is used to rank each cutting tool. The 
range of index values from the equation is be-
tween D and G, the rank for each tool is 
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**All cutting tool is taken from Sandvik Coromant and is compatible for cutting C360 Brass (ISO N). Cutting 
tools were all made by either coated carbide or cemented carbide. 
Catalogue: https://www.sandvik.coromant.com/en-gb/downloads/pages/default.aspx 

determined by subsequent order starting from 
the lowest value up to the highest. 
 
                 𝑇8[𝑖] =

(:([*]=:([#*)])
(:([#?@]=:([#*)])

  Eq. L 

Where:  
𝑇8            : Tool Value  
𝑖              : Index 
𝑚𝑎𝑥,	𝑚𝑖𝑛: Maximum and Minimum Value of the 
Weighted Result 
 
Equation L above shows the tool value index, 
and therefore the most compatible tool for the 
rough-facing milling process is known. The new 
findings will then be analyzed to see whether 
the cutting tool selection's initial result changes 
based only on the process cost. Other than that, 
the cause of these changes can be discussed 
as well. 
 

Results and Discussion 
Tool deflection is mainly caused by the cut-

ting force directly applied to the cutting tool 
(Nghiep et al., CDGL). The effect of tool deflection 
itself is creating a chatter that causes an unpre-
cise machining process. Precision is a must in 
all machining since it should have the correct di-
mension and tolerances.  Soori et al. (CDGJ) and 
Huo et al. (CDGJ) already prove and model that 
surface finish precision is affected by the pres-
ence of tool deflection. Apart from such preci-
sion issues, tool deflection also reduces tool life. 
 

 
 
Table E. Cutting tool cost and specifications** 

 
 

Tool life is an essential aspect of a workshop's 
economy. If the cutting tool's initial cost is hefty 
but could have a long life with multiple-use, me-
dium workshops might consider buying it. 
Therefore, the cutting tool's life and machining 
time are essential in deciding the tool selection. 
The operators have to consider the degrees of 
importance between the overall process cost 
and the cutting tool's perseverance. According 
to Sun et al. (CDGL), predicting a tool's life needs 
a better estimation approach than Taylor's con-
stants. The articles used a combination or hy-
brid of data-driven model and physics-based 
model that shows a more accurate prediction. 
However, like mentioned above, this work only 
uses the available data retrieved from several 
books such as in Groover (CDGV) or the physics-
based model, where each material's constant is 
stated. This paper does not focus on predicting 
the remaining useful life of a cutting tool but on 
selecting the cutting tool for a specific operation. 

The tool used in this research comprises 
several milling cutting tools compatible with the 
milling roughing process. equation C and equa-
tion e above, each available tool's tooling cost 
is listed in Table C below. Each cutting tool pro-
vides a different range for feed, cutting speed, 
and other parameters due to the specifications. 
Therefore, after entering the initial input to the 
application, i.e., equation J and equation L, the 
cutting tool optimality rank will change and show 
whether the priciest cutting tool would be the 
most optimal cutting tool in the milling process. 
Other than that, removing the deflection limit will 
show how it affects the cutting tool selection.  

 

 
 
 
 

Tool 
Number 

Tool Specification 𝑪𝒕	[IDR] 
Type Diameter 

𝑫𝒄	 [mm] 
Length 
𝑳𝒄	[mm] 

Max. Cutting Depth 
𝒅𝒎𝒂𝒙	[mm] 

` Face-Mill [^ [e e.a_ ^`e,]]] 
^ Face-Mill b] _] e.a_ [\_,]]] 
[ Face-Mill `_^ \[ e.a_ \_a,]]] 
i Face-Mill [^ [e \._] `^`,_]] 
_ Face-Mill b] _] \._] ^]^,_]] 
\ Face-Mill `_^ \[ \._] [\i,_]] 
a Face-Mill [^ [e \._] `_\,]]] 
b Face-Mill b] _] \._] ^\],]]] 
e Face-Mill `_^ \[ \._] i\b,]]] 
`] End-Mill b `e `b.]] ia_,]]] 
`` End-Mill `^ _] `\.]] e]i,[[[ 
`^ End-Mill ^] [b [a.]] `,i_a,_]] 
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Result with Deflection Limit-Constraint  
After entering the input in Table G above to 

the quick cost application, the result shows that 
the most suitable cutting tool for this specific 
milling operation is using tool C. The application  
also removes tool GG from consideration since it 
is the longest end-mill. The deflection caused by 
the minimum cutting parameter values shows 
that it is incompatible with this process and 
constraint. Figure C below shows the result of 
the application.  

 
Figure E. Optimal roughing process cost for each 

tool* 

*The color for each bar differentiates each tool's re-
sult and provides better visualization. Each cutting 
tool have been assigned to a certain 
 

The figure above shows that each cutting 
tool's process cost might not be optimal be-
cause of the deflection constraint. The result 
stated in the figure results from the most cost-
optimal calculation by the quick cost estimator. 
Take tool f for example, the application algo-
rithm iterates all possible cutting parameter and 
decide the best combination of depth of cut, 
width of cut, feed, RPM, and cutting speed. Be-
low is the optimal cost result of tool f: 
Width of Cut (𝑤) = VW mm 
Depth of Cut	(𝑑) = Y.Z mm 
Number of Cutting Pass = \] times vertically (depth) 
Deflection	(𝛿) = W.W]]^^ mm 
Cutting Speed	(𝑣) = \ZW._]Y m/s 
Rotational Speed	(𝑁) = \ZWW rpm 
Tool Life	(𝑇) = \,VY^.^b min 
Feed	(𝑓) = W.Vd mm/tooth 
Feed Rate	(𝑓')  = \WdZ mm/min 
Tool Path	(𝑚𝑚) = 67,512.8 mm 
Machining Time (𝑇() = 65.23 minutes 
Milling Process Cost (𝐶)) = IDR b],\Vb 

The tool life parameter is calculated from the 
standard Taylor's tool life equation (Groover, 

CDGV). The rotational speed depends on several 
gear steps as the machine used in this case is 
a conventional milling machine. The machining 
time is calculated from the feed rate and the tool 
path, with a specific algorithm to determine the 
optimal zig-zag pattern. The algorithm com-
bines every possible cutting parameter (width 
and depth of cut, feed, rotational speed) with 
specific limitations and consideration from all 
the tools, resulting in different optimal results. 
Tool GD and GC have the highest process cost 
and significantly differ from the rest of the tools. 
This abnormality is because both tools GD and 
GC are end-mills and therefore have a typically 
longer cutting tool length. The cutting tool length 
itself carries the most significant role in deter-
mining deflection. From equation f it is shown 
that the cutting tool's length itself is powered by 
three and therefore possesses a heavier role 
than other variables. Cutting tool diameter also 
affects the deflection, and the wider the diame-
ter of a tool, the smaller the deflection. Since 
tool GG have the smallest diameter and a very 
long tool's length, it is expected to have the 
highest deflection among other tools, even 
though it has the same material amongst end-
mill.  

 The next step is to use equation G to show 
how each tool has different machining times 
and tools' life due to each cutting tool's specifi-
cations. Table e below shows the cutting tool 
cost for the milling process 

 
Table M. Cutting tool cost used for the machining pro-
cess 

Tool 
Num. 

Tool's Life 
𝑇 

[min.] 

Machining 
Time 
𝑇( 

[min.] 

Tool's 
Machining 

Cost 
𝐶* 3

+!
+
4  

[IDR] 

` `,^\b.b [[.] _,\e` 
^ ^,\[`.` `i.^ `,e\e 

[ a,bb\.i ^].b `,a[] 
i `,^\b.b \_.^ \,^i\ 

_ b`\.` [].e a,\\_ 

\ ^,]_^.e [[.] _,b_` 
a `,^\b.e \].] a,[ab 

b `,i_[.` [^.b _,bai 
e ^,]_^.e [].[ \,e`` 

`] [^i,b^^.] [,^ai.\ i,abe 

`` - - - 
`^ b,[`_._ [ib.i \`,]\e 

IDR 12.762 
IDR 16.635 
IDR 27.829 

IDR 28.297 
IDR 28.380 
IDR 28.424 
IDR 28.985 
IDR 46.976 
IDR 49.124 

IDR 281.490 IDR 2.059.930 

 IDR -  IDR 500.000 IDR 1.000.000 IDR 1.500.000 IDR 2.000.000
Optimal Process Cost 

Tool 10

Tool 12

Tool 4

Tool 7

Tool 5
Tool 6

Tool 8

Tool 1

Tool 9

Tool 3

Tool 2
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1 2 3 4 5 6 7 8 9 10 12
70-30 0,0118 0,0000 0,0016 0,0226 0,0144 0,0120 0,0228 0,0120 0,0130 1,0000 0,1980
50-50 0,0094 0,0000 0,0018 0,0198 0,0107 0,0095 0,0193 0,0095 0,0098 1,0000 0,1599
30-70 0,0084 0,0000 0,0018 0,0186 0,0091 0,0085 0,0178 0,0084 0,0084 1,0000 0,1436

0,0000

0,0500

0,1000

0,1500

0,2000

0,2500

To
ol

 V
al

ue
 In

de
x

Tool Number

Figure 3. Cutting tool valuation result 

Table e above shows the similar calculation 
from the explanation on tool f results in Figure 
C before. The machining time on tool f can be 
seen as dividing the tool path by the feed rate. 
The tool's machining cost is a product of the 
milling process taking away the tool's life, which 
shows in the machining time and tool life ratio. 
The ratio is then multiplied by the tool's cost to 
represent the incurred tool process cost. Using 
equation J with three different ratios shows how 
each scenario will have different results after 
having the result. Table f below shows the 
weighted result for the process cost and the 
tool's machining cost. 
 
Table P. Weighted result for each scenario 

Tool 
Num. 

Weighted Result [IDR] 

RS-MS 
Weight 

TS-TS 
Weight 

MS-RS 
Weight 

` `^,ia[ `\,eei ^`,_`_ 
^ _,^]a a,[\\ e,_^i 

[ \,^]` e,`b^ `^,`\[ 
i `e,``] ^a,\b_ [\,^\` 

_ `i,]\` `b,[^_ ^^,_be 

\ `^,\^[ `a,`[a ^`,\_^ 
a `e,^_b ^a,`aa [_,]ea 

b `^,\^\ `a,`^a ^`,\^b 
e `[,`ba `a,[a] ^`,__i 

`] \^`,[[` `,][^,[_e `,ii[,[bb 
`` - - - 

`^ `^a,`e_ `a`,^ae ^`_,[\i 

 
. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The first column of the weight result indicates 
the heavier weight on the tool's machining cost. 
The second indicates the same weight, and the 
last column shows the heavier side of the pro-
cess cost result. Each scenario will have the 
minimum and maximum value using equation L 
and the index result is shown in Figure e below. 

Figure e describes the smaller the tool index 
value means that the tool has more value or 
higher ranking in this particular cutting opera-
tion. The minimum and maximum valuations as 
expected are D and G, accordingly. Therefore, 
the rank difference could be detected and be 
summarized in Table h below. 
 
Table T. Different ranking result 

Rank 

Tool Number 

Initial 
by Pro-

cess 
Cost 

Result 

RS-MS 
Weight 

TS-TS 
Weight 

MS-RS 
Weight 

` Tool ^ Tool ^ Tool ^ Tool ^ 
^ Tool [ Tool [ Tool [ Tool [ 

[ Tool e Tool ` Tool ` Tool ` 

i Tool ` Tool \ Tool b Tool e 
_ Tool b Tool b Tool \ Tool b 

\ Tool \ Tool e Tool e Tool \ 
a Tool _ Tool _ Tool _ Tool _ 

b Tool a Tool i Tool a Tool a 
e Tool i Tool a Tool i Tool i 

`] Tool `^ Tool `^ Tool `^ Tool `^ 

`` Tool `] Tool `] Tool `] Tool `] 
` Tool ^ Tool ^ Tool ^ Tool ^ 
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The weight ratios in Table h are based on the 
processing cost versus tool cost, as explained 
in the method section above. The first column 
states the original cutting tool ranking result-
based process cost using equation G, while the 
rest used the index value ranking result based 
on each ratio. According to Table h, the first two 
ranks of the tool selection exactly stay the 
same. However, in the third rank, the result 
changes into tool G in every scenario, which 
means the cutting tool selection change based 
on the weight given to the tool's machining cost. 
The same goes with the rest of the rank, and the 
leading cause of this change is the weight ratio, 
not the initial process cost result.  

Even though the first two ranks remain the 
same, it is still better to put weight ratios and 
valuation in the cutting tool selection. The main 
reason is the fact that not every tool is available 
all the time. All the tools above are shown capa-
ble of doing the process, but their availability is 
not known. The selected cutting tool might not 
be available for various reasons, such as it 
might be used in different machines by different 
operators. This opportunity leads to other tools 
to be picked as the ones that will support the 
operation. Other than these three scenarios, dif-
ferent ratios might also bring different results 
and ranks. This work only presents three weight 
composition scenarios representing a two-way 
tendency of the degree of importance between 
tooling cost and process cost.  

Since the optimality objectives depend on 
the machine operator, including preserving the 
tool's life, minimizing the process cost, and bal-
ancing both is a challenge. Williams et al. 
(Williams & Patel, CDGV) stated that the funda-
mental of cuttings lies in the cutting tool specifi-
cations. Different cutting tool specifications pro-
vide different cutting parameter range with dif-
ferent costs. Cutting tool specifications set all 
the cutting parameters and provide different 
process costs, deflection, and results. There-
fore, depending on the tool selection operator, 
there is always a possibility of having a different 
outcome and different tool selection ranks.  

The application user sets the maximum 
deflection limit. If it is different from the input 
inTable G, the result of optimal process cost 
would be different and thus might change the 
overall selection tool. For example, tool f has 
the optimal cost of IDR fH,GCf when the 
deflection limit is D.G mm. If the maximum 
deflection limit is G mm, the optimal cost will 

decrease to IDR 34,289. For sure, this is due to 
the increased allowance of cutting parameters 
and still making sure that the calculated deflec-
tion will not pass the limit. 

Overall from this case, the cutting tool 
valuation technique using weight between 
process cost and the cutting tool's machining 
cost will have a different result from the original 
method to select cutting tool. Therefore, it 
shows that minimizing tool costing could also be 
an optimality objective and improve the tool 
selection. 

 
Result without Deflection Limit-Constraint  
This section provides the input without having 
deflection constraints to determine whether 
other factors could change the cutting tool 
selection. After removing the deflection, the 
initial process cost result change for almost 
every tool. Figure f below shows each tool's 
optimal process cost without having the 
deflection risk limit. 

 
Figure P. Optimal roughing process cost for each 

tool after removing deflection constraint 

In contrast to the results presented in Figure 
C above, removing the deflection constraint 
proves that the optimal process cost can be bet-
ter. In this case, tool GC has the best value, and 
it is expected since Table C already shows that 
tool GC, although expensive, provides a suitable 
cutting parameter based on the specification. 
On the other hand, tool GD has the most expen-
sive process cost since it has the smallest diam-
eter and provides a smaller cut width. The result 
shows that the most expensive cutting tool 
might provide a better tool life. The cost may 
come from having a better coating and material 
to prolong the cutting process. Other than that, 
the result also depends on the milling process. 
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1 2 3 4 5 6 7 8 9 10 11 12
70-30 0,0830 0,0141 0,0908 0,6380 0,6978 0,5868 0,6458 0,5870 0,6303 1,0000 0,4094 0,0000
50-50 0,0638 0,0185 0,0978 0,5385 0,4965 0,4448 0,5233 0,4443 0,4549 1,0000 0,4281 0,0000
30-70 0,0562 0,0203 0,1005 0,4994 0,4173 0,3889 0,4751 0,3881 0,3859 1,0000 0,4355 0,0000
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Figure 5. Cutting tool valuation result without deflection risk limit 

Some processes only require a slight volume 
reduction, and some require significant reduc-
tion. Therefore, not all acceptable tool suits the 
cutting process.  

 After having each result, the same valuation 
method is applied to this case. The results are 
shown in Figure h and Table V. 

 
Table V. Different ranking results without deflection 
constraint 
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Tool Number 
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Table V above differs a lot from the result of Ta-
ble h that has deflection as the selection limit. In 
this case, the tool has automatically had the 
cheapest process cost without deflection limit 
since it can take more extensive cutting param-
eters such as wider width of cut and deeper 
depth of cut. Therefore, making the toolpath 
shorter and, thus, in the end, reducing the pro-
cess time and cost. This case shows that having 
a constraint such as deflection does alter the 
cutting tool selection.  

Figure h below shows a different valuation 
range from before. In Figure f, some valuation 
is too tiny compared to the highest value of one. 
In this case, however, the index valuation does 
not stand far from each other, and the rank re-
sult in Table V shows very little difference from 
the initial cutting tool selection. Compared to the 
initial rank, tool J and tool GG swap in the third 
scenario of the eD-JD ratio. This change is be-
cause of the small difference in both optimal 
process costs and shows that if the weight is 
heavier on the process cost result, tool GG is pre-
ferred. However, when the weight is heavier 
than the cutting tool's cost that calculates how 
much life is taken from the tool, tool GG jumps 
into fifth place. This means that tool GG has a 
more extended tool's life, and the method 
shows that having this valuation can improve 
tool selection by focusing on particular objec-
tives. The small difference shows that putting 
weight will change the tool selection cost. 
Therefore, putting weight in this cost element is 
tricky since both tool cost and the result are im-
portant. Depending on the user, they might 
change whether to use any weights to select the 
tools. 
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The actual maximum deflection of a cutting 
tool has to be known by the operator to input the 
correct value in the optimization. Flöter & 
Denkena (CDGh) explained that tool deflection is 
a challenge in machining, and this study shows 
that the tool selection is also affected by it. All 
the end-mill tools have deflection risk if the de-
flection is more than G mm. Tool GD and tool GC 
result in having an approximate e mm deflec-
tion, and tool GG has a Gh mm deflection. The rest 
of the tools have deflections less than D.Ce mm, 
not far from the initial limit. The exhaustive algo-
rithm exploration finds the most optimal combi-
nation of cutting parameters and concluded that 
the most optimal results have a deflection of 
more than G mm. This shows that tools GD,GG, and 
GC (end-mills) have deflection risk when the limit 
is removed. Therefore, operators need to know 
the maximum deflection for each tool to validate 
the process. Deflection could be caused by the 
tool specification and the workpiece's materials, 
and the cutting tool. Overall, this case shows 
that using a weighted valuation could improve 
cutting tool selection for a milling process. 

 
Conclusions 

In conclusion, adding tool valuation im-
proves the cutting tool selection for a milling pro-
cess. Using a self-developed cost estimation 
tool, the authors can estimate each tool's opti-
mal cost and find that the more expensive a tool 
is might not be the most suitable for a milling 
process. Tool valuation using weight between 
process cost estimation and tool's machining 
cost changes the index result of the applicable 
cutting tools. The conventional cutting tool se-
lection method sorts the best cutting tool based 
only on the minimal process cost. However, 
when the process cost result and the tool's ma-
chining cost that shows the amount of tool's life 
taken for the process are added to the method 
as two weighted-average factors, the rank of 
preferable cutting tools are changed. 

Furthermore, this study also shows that the 
deflection limit significantly influences the rank 
of preferable cutting tools. Changing the maxi-
mum deflection limit will create a different result 
for each tool and impact the cutting tool selec-
tion. Lifting the deflection constraint ensures 
that all cutting tools can have a depth of cut al-
most as deep as their maximum cutting length 
and, therefore, change the overall result. The 
three weight ratios in both cost components 

show that it changes the tool selection. If the 
user attends more into the tooling cost, they 
should use the JD-eD weight to select their tools, 
and it implies the other way around to other ra-
tios. Therefore, choosing the best tool for a mill-
ing process might be based on the process cost 
incurred and the preservation and availability of 
the cutting tool that incurs the tooling cost. In 
small and medium workshops, real-world appli-
cations should be wary of choosing the maxi-
mum deflection limit and the proper ratio of tool-
ing cost and process cost result. 
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