Perjanjian No: III/LPPM/2012-02/41-P

PENGAJARAN MATERI FISIKA DASAR UNTUK MAHASISWA FAKULTAS TEKNOLOGI INDUSTRI

Disusun oleh:

Risti Suryantari, M.Sc

Flaviana, S.Si

Lembaga Penelitian dan Pengabdian kepada Masyarakat
Universitas Katolik Parahyangan

2012

ABSTRAK

PENGAJARAN MATERI FISIKA DASAR UNTUK MAHASISWA FAKULTAS TEKNOLOGI INDUSTRI

Risti Suryantari, M.Sc¹ Flaviana, S.Si²

^{1,2}Jurusan Fisika, Universitas Katolik Parahyangan

Fisika merupakan cabang ilmu science yang dianggap penting dalam perkembangan teknologi dan mendasari bidang ilmu lain, seperti teknik. Melalui analisis selama perkuliahan berlangsung, terdapat beberapa masalah berdasarkan keluhan mahasiswa, yaitu dari segi materi, metode pembelajaran dan tim dosen pengajar. Permasalahan tersebut mengakibatkan proses perkuliahan kurang berjalan dengan baik dan mahasiswa menjadi semakin tidak menyukai fisika, terlihat dari rata-rata hasil ujian tengah semester dan ujian akhir yang kurang memuaskan. Sebagai upaya untuk mengatasi permasalahan tersebut, dilakukan tinjauan ulang terhadap perkuliahan berlangsung, kemudian menenentukan prioritas materi pengajaran dan metode pembelajaran, serta membuat contoh panduan metode pembelajaran, difokuskan untuk materi Fisika Dasar 2 (listrik-magnet, gelombang elektromagnetik, fisika modern, fisika nuklir, energi, dan global warming). Harapan dari penelitian ini adalah agar mahasiswa tetap memiliki esensi fisika sebagai ilmu empiris yang berlatar teori yang kuat dalam bidang industri apapun. Selain itu penelitian ini juga akan bermanfaat bagi para calon sarjana teknik, agar dengan mengikuti pekuliahan fisika dasar, kelak bukan hanya mengetahui segi teknis melainkan juga mengetahui latar belakang ilmiahnya secara baik, sehingga mendorong mereka untuk melakukan inovasi dan mengembangkan ilmu yang telah mereka pelajari.

Kata kunci: pengajaran materi fisika dasar, fakultas teknologi industri, metode pembelajaran

KATA PENGANTAR

Puji dan syukur kepada Tuhan Yang Maha Kuasa, karena atas segala kasihNya maka

penelitian dengan judul "Pengajaran Materi Fisika Dasar untuk Fakultas Teknologi Industri"

dapat diselesaikan. Makalah ini disusun sebagai laporan tertulis kegiatan penelitian yang

dilakukan selama Semester Genap 2011/2012. Hasil penelitian ini kemudian akan diterapkan

dalam perkuliahan semester selanjutnya.

Dalam menyelesaikan penelitian ini, penulis telah menerima bantuan dan dukungan dari

berbagai pihak yang keterlibatannya sangat berarti. Penulis menyampaikan ucapan terima kasih

kepada Dekan Fakultas Teknologi Informasi dan Sains, Ketua Jurusan Fisika Universitas Katolik

Parahyangan yang telah membantu kelancaran pemenuhan persyaratan administratif, serta

Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) Universitas Katolik

Parahyangan yang telah memberikan bantuan dana penelitian sehingga penelitian ini dapat

berjalan dengan lancar dan terselesaikan dengan baik.

Tentunya penelitian ini masih banyak kekurangan, oleh karena itu, dengan senang hati

penulis akan menerima kritik dan saran yang sifatnya membangun untuk penyempurnaan

penelitian ini. Akhir kata penulis berharap semoga penelitian ini dapat memberikan manfaat bagi

berbagai, khususnya para pemerhati pendidikan, untuk pengembangan kegiatan pembelajaran

yang lebih efektif.

Bandung, Juli 2012

Penulis

DAFTAR ISI

ABSTRAK ii
KATA PENGANTAR iii
DAFTAR ISI iv
DAFTAR TABEL v
DAFTAR GAMBAR vi
BAB I PENDAHULUAN
1.1. Latar Belakang
1.2. Rumusan Masalah
1.3. Tujuan Penelitian
1.4. Batasan Masalah
1.5. Sistematika Penulisan
BAB II TINJAUAN PUSTAKA
2.1. Satuan Acara Perkuliahan (SAP) Fisika Dasar Bagi Fakultas
Teknologi Industri, Universitas Katolik Parahyangan 4
2.2. Peran Ilmu Fisika di Bidang teknologi Industri
BAB III METODE PENELITIAN
BAB IV JADWAL PELAKSANAAN
BAB V HASIL DAN PEMBAHASAN
5.1 Materi Perkuliahan
5.2 Metode Pembelajaran
BAB VI KESIMPULAN DAN SARAN
DAFTAR PUSTAKA
I AMDID AN

DAFTAR TABEL

Tabel 2.1 Pembagian materi berdasarkan SAP 2010	. 5
Tabel 2.2 Pengembangan materi perkuliahan tahun 2011 dan 201	6
Tabel 4.1 Jadwal pelaksanaan penelitian	9
Tabel 5.1 Analisis terhadap permasalahan	. 11
Tabel 5.2 Prioritas materi fisika dasar 2 bagi mahasiswa Fakultas Teknologi Industri	12
Tabel 5.3 Pembagian materi	15
Tabel 5.4 Analisis terhadap metode pembelajaran	. 17
Tabel 5.5 Panduan metode perkuliahan	. 18

DAFTAR GAMBAR

Gambar 3.1	Diagram alir penelitian	8
Gambar 5.1	Format panduan materi	16

Pendahuluan

1.1 Latar Belakang

Fisika merupakan cabang ilmu *science* yang dianggap penting dalam perkembangan teknologi dan mendasari bidang ilmu lain, salah satunya Ilmu Teknik. Oleh karena itu mata kuliah Fisika Dasar diberikan pada awal semester bagi beberapa fakultas tertentu, salah satunya adalah Fakultas Teknologi Industri. Tujuan diberikan mata kuliah ini adalah memberikan wawasan tentang fisika sebagai landasan perkembangan ilmu dan teknologi, melalui pengajaran konsep dasar serta proses ilmiah fisika, agar dapat menunjang pengembangan pada mata kuliah lain selanjutnya. Kuliah ini diberikan dalam dua semester tahun pertama, yaitu Fisika Dasar 1 meliputi mekanika dan termodinamika, dan Fisika Dasar 2 meliputi listrik-magnet, getaran-gelombang serta fisika modern.

Melalui analisis pelaksanaan perkuliahan selama ini, terdapat beberapa masalah dimana mahasiswa mengeluhkan bahwa perkuliahan ini memiliki tingkat efektivits yang rendah dan relevansinya terhadap dunia kerja nampak kurang, bahkan dinilai tidak terkait. Permasalahan tersebut berkaitan dengan segi materi, metode pembelajaran dan tim dosen pengajar. Permasalahan tersebut mengakibatkan proses perkuliahan yang tidak berjalan dengan baik terlihat dari rata-rata hasil ujian tengah semester dan ujian akhir yang kurang memuaskan.

Sebagai upaya untuk mengatasi permasalahan tersebut, penulis melakukan tinjauan ulang terhadap perkuliahan yang selama ini berlangsung. Sebagai batasan masalah, materi yang ditinjau difokuskan pada topik Fisika Dasar 2 (listrik magnet, getaran-gelombang, dan fisika modern). Berdasarkan analisis permasalahan, dalam penelitian ini akan ditentukan prioritas materi dan metode pembelajaran, serta upaya menyusun panduan perkuliahan yang terstruktur dalam mata kuliah Fisika Dasar 2 yang dikaitkan dengan aplikasi dalam bidang teknologi industri dan perkembangan IPTEK.

Harapan dari penelitian ini adalah agar mahasiswa tetap memiliki esensi fisika sebagai ilmu empiris yang berlatar teori yang kuat dalam bidang industri apapun. Selain itu penelitian ini juga akan bermanfaat bagi para calon sarjana teknik, agar kelak bukan hanya mengetahui segi teknis melainkan juga mengetahui latar belakang ilmiahnya secara baik, sehingga mendorong mereka untuk melakukan inovasi dan mengembangkan ilmu yang telah mereka pelajari.

1.2 Rumusan Masalah

Penelitian ini lebih menekankan upaya perbaikan dalam pengajaran Fisika Dasar bagi Fakultas Teknologi Industri, berdasarkan analisis permasalahan yang ditemui selama perkuliahan. Oleh karena itu, dapat dirumuskan permasalahan penelitian sebagai berikut :

- 1. Bagaimana menentukan prioritas materi dan metode pembelajaran pada perkuliahan Fisika Dasar dikaitkan dengan aplikasi dalam bidang industri dan perkembangan IPTEK?
- 2. Bagaimana menyusun panduan perkuliahan fisika dasar yang terstruktur dikaitkan dengan aplikasi dalam bidang industri dan perkembangan IPTEK?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Menentukan prioritas materi dan metode pembelajaran pada perkuliahan Fisika Dasar dikaitkan dengan aplikasi dalam bidang industri dan perkembangan IPTEK?
- 2. Menyusun panduan perkuliahan fisika dasar yang terstruktur berdasarkan dikaitkan dengan aplikasi dalam bidang industri dan perkembangan IPTEK?

1.4 Batasan Masalah

Untuk mempersempit ruang lingkup, maka terdapat batasan masalah yang perlu didefinisikan dalam penelitian ini. Penelitian difokuskan pada materi perkuliahan Fisika Dasar 2 untuk mahasiswa Fakultas Teknologi Industri, Universitas Katolik Parahyangan, dengan metode tinjauan literatur.

1.5 Sistematika Penulisan

Penelitian ini terdiri dari enam bab yang ditulis menurut sistematika sebagai berikut :

BAB I :PENDAHULUAN

Bab ini memberikan gambaran umum mengenai seluruh isi penelitian meliputi latar belakang, rumusan masalah, tujuan penelitian, batasan masalah, dan sistematika penulisan.

BAB II :TINJAUAN PUSTAKA

Pada bab ini dibahas mengenai materi dan metode perkuliahan yang telah berlangsung, menurut satuan acara perkuliahan dan pedoman perkuliahan dalam kurun waktu hingga tahun 2012.

BAB III: METODE PENELITIAN

Pada bab ini dibahas mengenai metode penelitian yang disajikan dalam diagram alir penelitian.

BAB IV: JADWAL PELAKSANAAN

Pada bab ini dibahas jadwal pelaksanaan penelitian mulai dari pengumpulan bahan pustaka hingga penulisan laporan penelitian.

BAB V: HASIL DAN PEMBAHASAN

Pada bab ini dibahas mengenai langkah untuk menentukan prioritas materi dan metode perkuliahan yang efektif, melalui analisis permasalahan serta meninjau metode yang selama ini digunakan. Pada bab ini juga akan disajikan contoh panduan perkuliahan berdasarkan prioritas materi tersebut.

BAB V: KESIMPULAN DAN SARAN

Berisi kesimpulan berdasarkan pembahasan pada bab sebelumnya dan saran untuk penelitian lebih lanjut.

Tinjauan Pustaka

2.1 Satuan Acara Perkuliahan (SAP) Fisika Dasar Bagi Fakultas Teknologi Industri Universitas Katolik Parahyangan

Berdasarkan SAP 2010, materi Fisika Dasar 2 untuk FTI (Program Studi Teknik Industri dan Teknik Kimia) Unpar, menitikberatkan pada materi Listrik-Magnet, Getaran-Gelombang dan Fisika Modern, yang disampaikan kurang lebih dalam 14 pertemuan, dengan bobot 2 SKS. Untuk meningkatkan kompetensi siswa, diberikan responsi (tutorial) untuk Program Studi Teknik Industri dengan alokasi waktu dua jam perminggu. Topik-topik materi dan alokasi waktu disajikan dalam tabel 2.1. Berdasarkan perkembangan ilmu pengetahuan, maka kemudian pada materi pengajaran tahun 2011 hingga 2012 dikembangkan dengan menambahkan materi Fisika Nuklir, Energi, *Global Warming* dan topik khusus dalam fisika modern, karena dianggap penting bagi mahasiswa untuk mempelajarinya, disajikan dalam tabel 2.2 (Rusli A, 2012).

Referensi yang digunakan sejak tahun 2010 adalah buku tulisan Hobson (2007) bab 10 – 18 yang membahas materi Kelistrikan, Kemagnetan, dan Getaran-Gelombang (Gelombang Bunyi dan Gelombang Elektromagnetik), serta beberapa segi fisika abad ke-20 dan dampaknya. Buku ini tidak terlalu menonjolkan segi matematis (lebih pada kualitatif), sedangkan untuk pemahaman yang bersifat matematis (kuantitatif), digunakan referensi dari buku tulisan Giancoli (2007).

Metode pengajaran yang digunakan selama ini adalah dengan cara menjelaskan (dengan media papan tulis, *powerpoint slides*) dan diskusi. Untuk meningkatkan kemampuan dan pemahaman siswa, diberikan tugas menulis intisari kuliah (untuk melatih merangkum dan menemukan inti kuliah) per-minggu secara berkelompok agar dapat terjadi diskusi, pendapat pribadi anggota-anggota kelompok (untuk melatih mengambil sikap dalam hidup), dan satu pertanyaan (untuk melatih kekritisan menelaah

materi kuliah). Adanya pertanyaan mingguan dari mahasiswa, juga dapat menjadi motivasi dosen untuk mengejar penemuan jawabannya (Rusli, A, 2011).

Tabel 2.1: Pembagian materi berdasarkan SAP 2010

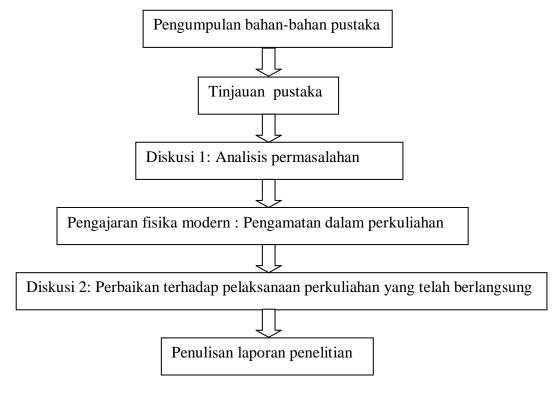
Pertemuan	Pokok bahasan	Materi	
1	Pendahuluan	Tata cara kerja sains.	
		Mengenalkan pola perkuliahan.	
2	Listrik-Magnet	Muatan Listrik dan Gaya Coulomb.	
		Medan Listrik.	
3,4	Listrik-Magnet	Energi Potensial Listrik dan Potensial Listrik.	
		• Arus listrik dan Kekekalan Muatan Listrik.	
		Rangkaian Arus Searah.	
5,6	Listrik-Magnet	• Medan Magnetik (akibat gerak muatan listrik dan	
		oleh arus listrik).	
		• Gaya Gerak Listrik, Gaya Lorentz dan Induksi	
		Elektromagnetik	
		Rangkaian Arus Bolak-Balik.	
7,8	Getaran dan	Getaran dan Gelombang .	
	Gelombang	• Gelombang Elektromagnetik.	
9,10	Getaran dan	Penjumlahan Getaran dan Gelombang.	
	Gelombang	• Interferensi dan Difraksi.	
11,12	Fisika Modern	Teori Relativitas Khusus dan Umum.	
		• Transformasi Lorentz.	
		Kontraksi Panjang dan Dilatasi waktu.	
		Kesetaraan Massa-Energi.	
13	Fisika modern	Dualitas Gelombang-Partikel dan Gejala Kuantum.	
14	Cadangan	-	

Tabel 2.2: Pengembangan materi perkuliahan tahun 2011 dan 2012

Pertemuan	Pokok bahasan	Materi	
1	Pendahuluan	Mengenalkan pola perkuliahan dan tata cara kerja sains	
2	Listrik Magnet	Muatan Listrik dan Gaya Coulomb	
		Konsep Medan Listrik	
3	Listrik Magnet	Arus Listrik dan Kekekalan Muatan Listrik	
		Kekekalan Energi pada Rangkaian Arus Searah	
4	Listrik magnet	Medan Magnetik (akibat gerak muatan listrik dan oleh	
		arus listrik)	
		Gaya Gerak Listrik dan Gaya Lorentz	
		Induksi Elektromagnetik	
		Rangkaian Arus Bolak-Balik	
5	Fisika Nuklir	• Inti Atom, Radioaktivitas dan Risiko radiasi	
6	Energi	Tantangan Penyediaan Energi Dunia	
7	Cadangan	-	
		Ujian tengah semester	
8	Getaran dan	Getaran-Gelombang, Gelombang Bunyi	
	Gelombang	Gelombang Elektromagnetik	
9	Gelombang	Gelombang Elektromagnetik dan Cahaya sebagai	
	Elektromagnetik	Gelombang Elektromagnetik	
10	Global Warming	Efek Rumah Kaca dan Perubahan Iklim	
11	Fisika Modern	Teori Relativitas Khusus dan Kosmologi	
		Transformasi Lorentz	
		Kontraksi Panjang dan Dilatasi Waktu	
		Kesetaraan Massa-Energi	
12	Fisika Modern	Gagasan Kuantum dan Medan Kuantum.	
13	Fisika Modern	Dualitas Gelombang-Partikel dan Gejala Kuantum	
14	Cadangan	-	
		Ujian akhir semester	

2.2 Peran Ilmu Fisika di Bidang Teknologi Industri

Program Studi Teknik industri berfokus kepada perancangan, peningkatan dan instalasi dari sistem terintegrasi yang terdiri atas manusia, material, peralatan dan energi, untuk itu dibutuhkan pengetahuan dan keahlian dalam bidang matematika, fisika dan ilmu-ilmu sosial serta prinsip dan metodologi teknik atau rekayasa untuk menspesifikasikan, memprediksi dan mengevaluasi hasil yang diperoleh dari sebuah sistem terintegrasi. Sedangkan Program Studi Teknik Kimia difokuskan terutama dalam merancang dan memelihara proses-proses kimia. Pengetahuan dasar tidak dapat dilepaskan dari beberapa topik penting seperti pengaruh lingkungan, pengetahuan fluida, termodinamika, bahkan lebih luas lagi tentang mekanika, dimana materi tersebut terkait dengan material. Pengetahuan-pengetahuan tersebut merupakan topik-topik dalam ilmu fisika.


Untuk mengimbangi pesatnya kemajuan teknologi, maka para mahasiswa dibekali dengan penguasaan akan teknologi tersebut, yaitu dengan memanfaatkan perpaduan dari ilmu pengetahuan alam, ilmu sosial, teknologi dan humaniora. Ilmu fisika merupakan bagian dari ilmu pengetahuan alam yang mendukung mengembangan teknologi itu sendiri.

Ilmu fisika memiliki banyak aplikasi di berbagai bidang, dan menjadi dasar pengembangan teknologi, seperti dalam bidang komunikasi, transportasi, pertahanan dan keamanan, rumah-tangga, dan lain-lain. Bidang-bidang tersebut secara tidak langsung terkait pula dengan industri secara luas. Contoh aplikasi-aplikasi ilmu fisika yang nyata adalah pada berbagai alat dan mesin yang digunakan dalam industri rumah tangga, industri pangan, komunikasi, informatika, transportasi dan sebagainya.

Melihat aplikasi yang sangat luas, semestinya dapat dijadikan daya tarik tersendiri terhadap mata kuliah Fisika. Di samping itu, pengembangan-pengembangan terhadap aplikasi tersebut masih diperlukan. Harapannya adalah pemahaman mendasar tentang ilmu fisika dapat dijadikan suatu stimulan bagi mahasiswa dalam berkarya di bidangnya masing-masing.

Metode Penelitian

Metode penelitian yang dilakukan adalah studi pustaka khususnya terkait dengan perkuliahan sebelumnya, dengan meninjau materi, metode pembelajaran, buku referensi yang selama ini digunakan, kemudian di permasalahan. Penelitian dilanjutkan dengan mengamati respon mahasiswa terhadap metode yang selama ini digunakan, selama perkuliahan semester genap tahun ajaran 2011-2012 berlangsung, kemudian berdasarkan hal tersebut dapat dilakukan perbaikan dalam hal pengajaran materi Fisika Dasar, dari segi materi yang diberikan maupun metode pembelajaran. Diagram alir penelitian disajikan dalam gambar 3.1.

Gambar 3.1: Diagram alir penelitian

Jadwal Pelaksanaan

Jadwal pelaksanaan penelitian Pengajaran Materi Fisika Dasar untuk Mahasiswa Fakultas Teknologi Industri adalah seperti pada tabel 4.1. Penelitian dimulai dengan pengumpulan bahan pada bulan Januari-Februari 2012, kemudian tinjauan pustaka yang dilakukan pada bulan Januari-Maret 2012, seiring dengan diskusi yang dilakukan pada bulan Februari-Maret 2012 mengenai bagaimana tinjauan tersebut dapat diterapkan dalam perbaikan perkuliahan selanjutnya. Diskusi dilanjutkan pada bulan Mei-Juni 2012 seiring dengan penulisan laporan penelitian.

Tabel 4.1. Jadwal pelaksanaan penelitian

Kegiatan	Jan	Feb	Mar	April	Mei	Juni	Juli
Pegumpulan bahan							
Tinjauan pustaka							
Diskusi I							
Pengajaran Fisika dasar							
Diskusi 2							
Penulisan laporan							

Hasil dan Pembahasan

Berdasarkan pengamatan pada perkuliahan yang telah berlangsung selama ini, khususnya selama satu semester (semester genap tahun ajaran 2011-2012), ditemukan keluhan dari sebagian besar mahasiswa bahwa perkuliahan Fisika Dasar memiliki tingkat efektivitas yang rendah dan relevansinya pada dunia kerja tampak kurang, bahkan dinilai tidak terkait. Hal ini dikarenakan penyampaian materi tidak meninjau langsung permasalahan pada dunia industri itu sendiri, serta kurang menitikberatkan teori yang terkait dengan permasalahan yang nyata.

Berdasarkan analisis satuan acara perkuliahan hingga tahun 2012, keluhan tersebut nampaknya terkait dengan beberapa hal, dari segi materi, metode pembelajaran dan tim dosen pengajar. Dari segi materi misalnya, topik materi yang begitu banyak sementara bobot mata kuliah yang hanya 2 SKS, mengakibatkan penyampaian materi menjadi kurang berkesan karena begitu banyaknya topik yang harus disampaikan. Dari segi metode pembelajaran juga dianggap kurang menarik dan monoton, sehingga mahasiswa semakin tidak menyukai mata kuliah fisika.

Kemudian dari segi pengajar, dimana merupakan tim yang terdiri dari beberapan dosen (dengan pertimbangan jumlah mahasiswa yang cukup banyak dan bertujuan menyeragamkan muatan materi yang diberikan kepada mahasiswa), tidak menutup kemungkinan bahwa terdapat cara penyampaian yang berbeda, bahkan terkadang porsi materi yang disampaikan juga berbeda karena faktor kondisi kelas yang berbeda. Analisis terhadap permasalahan disajikan dalam tabel 5.1.

Berdasarkan analisis permasalahan dalam tabel 5.1, maka dilakukan perbaikan dalam hal (1) materi dan (2) metode pembelajaran. Kedua hal tersebut nantinya secara ringkas akan dituangkan dalam bentuk satuan acara perkuliahan yang baru (Lampiran 1). Kemudian perlu disusun panduan perkuliahan (bagi tim dosen pengajar) dan panduan materi (berdasarkan prioritas materi).

Tabel 5.1: Analisis terhadap permasalahan

Fokus permasalahan	Harapan	Solusi
Tingkat efektivitas yang rendah	Kuliah efektif	 Menyesuaikan metode penyampaian materi dengan kondisi kelas dan melakukan inovasi terhadap cara pembelajaran. Perkuliahan semata-mata tidak hanya mengejar untuk menyelesaikan seluruh topik namun menekankan kualitas pembelajaran.
Relevansinya pada dunia kerja tampak kurang	Tampak relevansi mata kuliah dengan dunia kerja.	Meninjau langsung permasalahan pada dunia industri.Mengaitkan teori dengan permsalahan nyata.
Mahasiswa tidak menyukai fisika.	Menyukai dan menyadari pentingnya ilmu fisika.	Mengubah metode pembelajaran menjadi lebih menarik dan tidak monoton.
Topik (materi) terlalu banyak sementara waktu terbatas.	Adanya prioritas topik yang ditonjolkan terkait dengan bidang industri.	Menentukan prioritas topik.
Porsi materi yang disampaikan untuk setiap kelas berbeda.	Porsi materi yang disampaikan untuk setiap kelas, seharusnya sama.	Membuat panduan materi berdasarkan prioritas materi bagi tim dosen pengajar.
Metode pembelajaran setiap dosen berbeda.	Metode pembelajaran setiap dosen sebaiknya seragam, agar terdapat standar kualitas pengajaran.	Menyusun panduan metode pembelajaran untuk tim dosen pengajar.

Tabel 5.2: Prioritas materi fisika dasar 2 bagi mahasiswa Fakultas Teknologi Industri

Pokok Bahasan	Materi	Pertimbangan	Prioritas
Listrik-Magnet Fisika Nuklir dan Energi	 Muatan Listrik Gaya Coulomb Konsep Medan Listrik sebagai penimbul Gaya Coloumb Usaha oleh Gaya Listrik Energi Potensial Listrik dan Potensial Listrik Arus Listrik Kekekalan Muatan Listrik Rangkaian Arus Searah Medan Magnetik Induksi Elektromagnetik Rangkaian Arus Bolak-Balik Inti Atom Radioaktivitas 	 Seluruh topik terkait secara fisis sehingga tidak dapat dihilangkan satu sama lain. Maka lebih ditekankan pada segi kualitatif sehingga pemikiran mahasiswa tidak terpusat pada faktor kuantitatif. Dengan mengetahui alur fisisnya maka diharapkan mahasiswa mampu menemukan gagasan yang terkait dengan ilmunya. Aplikasi dalam Teknologi sangat luas, hampir di seluruh bidang. Materi ini dianggap penting untuk dibahas, karena terkait 	 Seluruh topik, namun penekanan secara kualitatif. Aplikasi listrik-magnet. Tantangan terhadap perkembangan dan penemuan baru dalam IPTEK. Pemahaman nuklir. Radioaktivitas dan risiko radiasi.
	 Risiko Radiasi Tantangan Penyediaan Energi Dunia 	dengan perkembangan ilmu pengetahuan dan akan memacu pemikiran kristis mahasiswa terhadap penghematan energi, alternatif sumber energi dan aplikasi nuklir.	 Aplikasi nuklir dalam IPTEK Sumber energi dunia. Krisis energi dunia. Penghematan energi dunia. Peran ilmu fisika dan teknik dalam upaya penghematan energi dunia
Getaran dan Gelombang	 Getaran Gelombang Gelombang bunyi Gelombang Elektromagnetik 	 Materi dalam gelombang elektromagnetik secara umum telah memuat hal-hal penting dalam getaran dan gelombang, Ketika membahas gelombang elektromagnetik, dengan sendirinya akan dibawa pada pemikiran terhadap konsep getaran dan gelombang mekanik. 	 Gelombang elektromagnetik Persamaan dan perbedaan gelombang elektromagnetik dengan gelombang mekanik. Spektrum gelombang elektromagnetik. Aplikasi gelombang elektromagnetik.

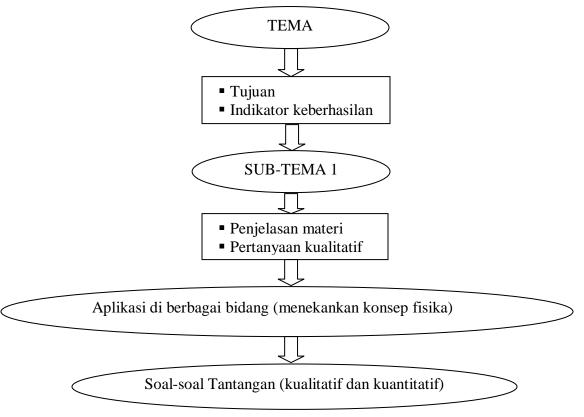
Global Warming	Efek rumah kacaPerubahan iklim	Penting untuk dibahas, karena terkait dengan permasalahan dunia saat ini dan mahasiswa diharapkan mampu berpartisipasi dan ber-empati dalam perbaikan kondisi lingkungan.	 Pengertian global warming. Penyebab dan dampak global warming. Upaya mengurangi dampak global warming. Aplikasi ilmu fisika dan teknik dalam menanggulangi dampak global warming.
Fisika Modern	 Teori Relativitas Khusus Transformasi Lorentz Kontraksi Panjang Dilatasi Waktu Kesetaraan Massa-Energi Kosmologi Gagasan kuantum Medan Kuantum Dualitas Gelombang-Partikel. Gejala Kuantum 	 Fisika modern merupakan topik yang konsepnya agak berbeda dengan konsep fisika klasik, sehingga penyampaian materi secara mendetail dianggap kurang tepat pada mata kuliah Fisika Dasar. Namun pengetahuan ini cukup penting bagi kemajuan ilmu pengetahuan, sehingga perlu disajikan topik khusus dengan tujuan memancing ketertarikan mahasiswa akan ilmu fisika, dan menggugah keingintahuan akan ilmu ini. 	 Perkembangan fisika modern. Kegagalan fisika klasik. Lahirnya teori relativitas khusus, teori relativitas umum (kosmologi), hingga kuantum. Teori relativitas khusus: Postulat teori relativitas khusus dan konsekuensinya (kontraksi panjang, dilatasi waktu dan kesetaraan massa energi, kecepatan relativistik). Pemahaman asal mula fisika kuantum hingga konsep dualitas gelombang partikel. Aplikasi fisika kuantum dalam IPTEK.

5.1 Materi Perkuliahan

Pertimbangan dalam menentukan prioritas materi akan disajikan dalam tabel 5.2. Urutan pembagian materi berdasarkan alokasi waktu disajikan dalam tabel 5.3, dengan pertimbangan keterkaitan antar topik. Referensi yang digunakan sejak tahun 2010 adalah buku tulisan Hobson (2007) Bab 10 – 18 yang membahas materi Kelistrikan, Kemagnetan, dan Getaran-Gelombang (Gelombang Bunyi dan Gelombang Elektromagnetik), serta beberapa segi fisika abad ke-20 dan beberapa dampaknya. Buku ini tidak terlalu menonjolkan matematis (lebih pada kualitatif). Hal ini baik bagi penguasaan ilmu secara konseptual (Rusli, A, 2010).

Dalam *Preface* buku dikemukakan bahwa penulis berupaya untuk mengusahakan kepahaman ilmiah (*scientific literacy*), wawasan dan sudut pandang fisika yang lebih mutakhir, pembelajaran yang lebih interaktif, kemampuan berhitung juga diperhatikan, jumlah bahasan diperkecil agar dapat dibahas dengan lebih mendalam, sehingga penalaran dapat diasah, dan ada suatu aliran cerita (*storyline*) sebagai perekatbahasan (Rusli, A, 2010).

Sedangkan untuk pemahaman yang bersifat matematis (kuantitatif), digunakan referensi dari buku tulisan Giancoli (2007). Dalam buku ini diberikan contoh-contoh soal aplikatif dalam kehidupan sehari-hari. Kedua referensi ini dipandang masih relevan dengan materi ajar dan tepat bila digunakan sebagai referensi utama.


Tabel 5.3: Pembagian materi

Pertemuan	Pokok bahasan	Materi			
1	Pendahuluan	Mengenalkan pola perkuliahan dan tata cara kerja sains			
2	Listrik Statis	Muatan Listrik dan Fenomena Listrik Statis			
		Konsep MedanListrik			
3	Listrik Dinamis	Arus Listrik dan Kekekalan Muatan Listrik			
		Kekekalan Energi pada Rangkaian Arus Searah			
		Aplikasi Kelistrikan			
4	Listrik-Magnet	Medan Magnetik (akibat gerak muatan listrik dan oleh arus listrik)			
		Gaya Gerak Listrik, Gaya Lorentz dan Induksi Elektromagnetik			
		Rangkaian Arus Bolak-Balik			
		Aplikasi Listrik-Magnet			
5	Gelombang elektromagnetik	Persamaan dan Perbedaan Gelombang Elektromagnetik dengan Gelombang Mekanik			
		Spektrum Gelombang Elektromagnetik			
		Aplikasi Gelombang Elektromagnetik			
6	Global Warming	• Pengertian, Penyebab, dan Dampak Global Warming (efek rumah kaca), serta Upaya			
		Menanggulangi Global Warming			
		Aplikasi Ilmu Fisika dan Teknik dalam Menanggulangi Global Warming			
7	· - · · · · · · · · · · · · · · · · · ·				
8	Fisika Modern	Ujian tengah semester			
8	FISIKA MODELII	Kegagalan Fisika Klasik, dan Perkembangan Fisika Modern Lehiman Tani Balatinitas Khanga Tani Balatinitas Hanga (Kanadasi) hinasa Kuantura			
9	Fisika Modern: Teori relativitas	Lahirnya Teori Relativitas Khusus, Teori Relativitas Umum (Kosmologi), hingga Kuantum Tori Relativitas Khusus, Participas Relativitas Umum (Kosmologi), hingga Kuantum			
9	Fisika Moderii: Teori felativitas	• Teori Relativitas Khusus: Postulat Teori Relativitas Khusus dan Konsekuensinya (Kontraksi Panjang dan Dilatasi Waktu)			
10	Fisika Modern: Teori relatvitas	Teori Relativitas Khusus: Postulat Teori Relativitas Khusus dan Konsekuensinya (Kesetaraan			
10	Tisika Wodern. Teori Telatvitas	Massa-Energi dan Kecepatan Relativistik)			
11	Fisika Modern: Fisika kuantum	Pemahaman Asal Mula Fisika Kuantum hingga Konsep Dualitas Gelombang-Partikel			
		Aplikasi Fisika Kuantum dalam IPTEK.			
12	Fisika Nuklir	Pemahaman Nuklir, Radioaktivitas dan Risiko radiasi.			
		Aplikasi Nuklir dalam IPTEK.			
13	Energi	Sumber Energi di Dunia, Krisis Energi di dunia, dan Upaya Penghematan Energi Dunia.			
		Peran Ilmu Fisika dan Teknik dalam Upaya Penghematan dan Penyediaan Energi Dunia.			
14	Cadangan	-			
		Ujian akhir semester			

5.2 Metode Pembelajaran

Berikut ini akan dilakukan analisis terhadap metode pembelajaran hingga tahun 2011 untuk menentukan metode pembelajaran yang lebih menarik, demi tercapainya tujuan perkuliahan, disajikan dalam tabel 5.4. Berdasarkan analisis materi dan mendukung dilaksanakannya metode perkuliahan dengan baik, maka akan disusun panduan perkuliahan yang baru bagi tim dosen beserta panduan materi bagi mahasiswa. Dalam tabel 5.5 akan disajikan panduan metode perkuliahan untuk dosen.

Untuk panduan materi secara garis besar materi akan disusun dalam format sederhana (Hobson, 2005; Giancoli, 2007), untuk memudahkan arahan pembelajaran. Dalam menjelaskan konsep dan aplikasi, dosen sebaiknya mengacu pada panduan tersebut, namun tidak menutup kemungkinan untuk dikembangkan, setiap perkembangan diharapkan dapat dibagikan kepada dosen lain. Contoh format panduan materi disajikan dalam gambar 5.1, dan contoh panduan materi untuk topik gelombang elektromagnetik disajikan dalam lampiran 2.

Gambar 5.1: Format panduan materi

Tabel 5.4: Analisis terhadap metode pembelajaran

No	Metode yang telah diterapkan	Analisis	Perbaikan
1	Penjelasan lisan dengan media <i>powerpoint slides</i> dan papan tulis.	Metode ini dianggap membosankan dan kurang menarik bagi sebagian besar mahasiswa.	Penjelasan lisan atau ceramah dengan media powerpoint slides dan papan tulis tidak diberikan setiap minggu selama jam perkuliahan penuh, namun diselingi dengan cara lain. Misalnya diskusi kelompok untuk beberapa topik.
2	Penggunaan video dan gambar dalam menjelaskan materi.	Penggunaan video dan gambar dalam penjelasan materi lebih menarik daripada secara lisan atau ceramah.	 Metode pembelajaran ini masih dipandang baik untuk diterapkan. Selain gambar dan video, diperlukan alat peraga untuk menjelaskan fenomena-fenomenan tertentu.
3	Penyampaian materi ditekankan secara kualitatif demikian juga dengan evaluasi ujian tengah semester dan ujian akhir semester.	Penekanan kualitatif dapat mengubah pandangan bahwa fisika itu sulit dan identik dengan rumus, menjadi lebih menyenangkan.	Metode pembelajaran ini masih dipandang baik untuk diterapkan.
4	Tugas menulis intisari kuliah per minggu secara berkelompok dan satu pertanyaan.	 Metode ini baik untuk melatih merangkum dan menemukan inti kuliah, pendapat pribadi anggota-anggota kelompok (untuk melatih mengambil sikap dalam hidup), dan satu pertanyaan (untuk melatih kekritisan menelaah materi kuliah) Karena keterbatasan waktu, tidak semua pertanyaan dapat terjawab. Mahasiswa merasa terbebani karena seolah-olah harus merangkum seluruh isi kuliah. Mahasiswa merasa terbebani bila diterapkan setiap minggu. 	 Metode pembelajaran ini masih dipandang baik untuk diterapkan namun tidak setiap minggu, misalnya hanya untuk pokok bahasan tertentu. Sebaiknya menulis intisari kuliah dipandu dengan pertanyaan singkat agar mahasisnya dapat lebih terarah dalam menulis. Untuk pertanyaan yang ditulis mahasiswa, jawaban pertanyaan diberikan di luar jam perkuliahan pada waktu khusus.
5	Tugas mencari topik-topik terkait dengan pokok bahasan dari sumber internet atau buku, per minggu.	 Metode bertujuan agar mahasiswa mampu menemukan hal baru, kemudian marasa tertarik dengan mata kuliah ini. Mahasiswa merasa terbebani bila diterapkan setiap minggu. 	Metode pembelajaran ini masih dipandang baik untuk diterapkan, namun frekuensi tugas diperkecil, misalnya dua topik sebelum UTS dan dua topik setelah UTS.

Tabel 5.5: Panduan metode perkuliahan

Pertemuan	Pokok Bahasan	Materi	Metode
1	Pendahuluan	Mengenalkan pola perkuliahan dan tata cara kerja sains	 Dosen: Menjelaskan pola perkuliahan dan tata cara kerja sains secara lisan, dengan media komputer (dilengkapi dengan gambar). Menjawab pertanyaan spontan mahasiswa. Mahasiswa: Menuliskan cerita diri singkat, agar dapat diperoleh gambaran umum tentang karakter kelas. Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik. (Dosen dan mahasiswa bersama-sama membuat kesepakatan perkuliahan untuk menciptakan kedisiplinan kelas.)
2	Listrik-Magnet	 Muatan Listrik Fenomena Listrik Statis Konsep Medan Listrik 	 Dosen: Menjelaskan dengan media powerpoint slides, papan tulis, dilengkapi dengan gambar dan video, beserta alat peraga (ditentukan) untuk fenomena listrik statis. Menjawab pertanyaan spontan mahasiswa. Mahasiswa: Mahasiswa dipersilahkan ikut mencoba alat peraga tersebut. Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik.
3	Listrik-Magnet	 Arus Listrik Kekekalan Muatan Listrik Kekekalan Energi pada Rangkaian Arus Searah Aplikasi Kelistrikan 	 Dosen: Menjelaskan konsep dan aplikasi dengan media powerpoint slides, papan tulis, dilengkapi dengan gambar dan video, beserta alat peraga (ditentukan) untuk menjelaskan listrik dinamis. Dosen menjawab pertanyaan mahasiswa. Mahasiswa: Mahasiswa dipersilahkan ikut mencoba alat peraga tersebut. Mahasiswa dipersilahkan bertanya apa saja terkait dengan topik. Mahasiswa dipersilahkan mengungkap gagasan apa saja terkait dengan topik.

4	Listrik magnet	 Medan Magnetik (akibat gerak muatan listrik dan oleh arus listrik) Gaya Gerak Listrik Gaya Lorentz Induksi Elektromagnetik Rangkaian Arus Bolak-Balik. Aplikasi Listrik-Magnet 	 Dosen: Dosen menjelaskan konsep dan aplikasi dengan media powerpoint slides, papan tulis, dilengkapi dengan gambar dan video, beserta alat peraga (ditentukan) untuk menjelaskan peristiwa kemagnetan dikaitkan dengan kelistrikan. Dosen menjawab pertanyaan mahasiswa. Mahasiswa: Mahasiswa dipersilahkan ikut mencoba alat peraga tersebut. Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik.
			 Tugas terstruktur: Tugas di kelas: Mahasiswa menulis intisari kuliah dipandu dengan pertanyaan singkat, mengungkapkan gagasan apa saja terkait dengan topik (bila ada), dan satu pertanyaan (bila ada). Tugas di rumah: Mahasiswa (berkelompok) mengumpulkan uraian berisi penemuan baru atau aplikasi terkait listrik-magnet, pada bidang tertentu. Dosen membagi bidang-bidang tersebut secara acak, satu kelompok satu topik (waktu: 1 minggu).
5	Gelombang elektromagnetik:	 Persamaan dan Perbedaan Gelombang Elektromagnetik dengan Gelombang Mekanik Spektrum Gelombang Elektromagnetik Aplikasi Gelombang Elektromagneti 	 Metode: 1.Dosen menjelaskan tentang persamaan dan perbedaan gelombang elektromagnetik dengan gelombang mekanik, spektrum gelombang elektromagnetik, serta aplikasi gelombang elektromagnetik, dengan media powerpoint slides, papan tulis, dilengkapi dengan gambar dan video singkat (45 menit). 2.Mahasiswa dibagi ke dalam kelompok-kelompok, setiap kelompok memilih topik salah satu contoh gelombang elektromagnetik secara acak. Setiap kelompok mendiskusikan tentang penemuan terkini terkait topik, konsep yang digunakan, ide atau gagasan pengembangan atau penemuan baru (45 menit) 4.Mahasiswa menuliskan hasil diskusi dan menjelaskan secara singkat di depan kelas (30 menit).

6	Global Warming	 Pengertian Global Warming Penyebab dan Dampak Global Warming (efek rumah kaca) Upaya Menangggulangi dampak Global Warming Aplikasi Ilmu Fisika dan Teknik dalam Menanggulangi Dampak Global Warming 	Metode: 1.Dosen menjelaskan tentang pengertian <i>global warming</i> , penyebab dan dampak <i>global warming</i> (efek rumah kaca), upaya mengurangi dampak global warming, aplikasi ilmu fisika dan teknik dalam menanggulangi dampak <i>global warming</i> , melalui gambar dan video singkat (30 menit). 2.Mahasiswa dibagi ke dalam kelompok-kelompok, setiap kelompok mendiskusikan tentang aplikasi ilmu fisika dan teknik dalam menanggulangi dampak <i>global warming</i> (45 menit) 4.Mahasiswa menuliskan hasil diskusi dan menjelaskan secara singkat di depan kelas, disertai dengan tanya jawab singkat (45 menit).
			 Tugas tersruktur: Mahasiswa (berkelompok) mengumpulkan tulisan berisikan penemuan baru atau aplikasi terkait salah satu topik, salah satu contoh gelombang elektromagnetik atau <i>global warming</i>. Dosen akan membagi topik secara acak (1 minggu).
7	Cadangan	-	-
		Ujian tengah semester	Soal ujian dan metode penilaian disusun oleh tim dosen secara bersama- sama dengan menyesuaikan terhadap perkembangan setiap kelas. Soal ujian lebih menekankan kemampuan kualitatif, namun terdapat sedikit matematis.
8	Fisika modern	Perkembangan Fisika Modern • Kegagalan Fisika Klasik. • Lahirnya Teori Relativitas Khusus, Teori Relativitas Umum (kosmologi), hingga Kuantum	 Dosen: Dosen menjelaskan Perkembangan fisika modern media powerpoint slides, papan tulis, dilengkapi dengan gambar dan video. Dosen menjawab pertanyaan mahasiswa. Mahasiswa: Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik.
9	Fisika modern	 Postulat Teori Relativitas Khusus dan Konsekuensinya Kontraksi panjang dan Dilatasi waktu 	 Dosen: Dosen menjelaskan tentang relativitas khusus media <i>powerpoint slides</i>, papan tulis, dilengkapi dengan gambar dan video. Dosen menjawab pertanyaan mahasiswa. Mahasiswa: Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik.

10	Fisika modern	Kesetaraan Massa-Energi	Dosen:
		Kecepatan Relativistik	• Dosen menjelaskan Perkembangan fisika modern media powerpoint
			slides, papan tulis, dilengkapi dengan gambar dan video.
			Dosen menjawab pertanyaan mahasiswa.
			Mahasiswa:
			Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkeit dengan terik
		+	terkait dengan topik. Tugas terstruktur :
			• Tugas di kelas:
			Mahasiswa menulis intisari kuliah dipandu dengan pertanyaan
			singkat, mengungkapkan gagasan apa saja terkait dengan topik (bila ada), dan satu pertanyaan (bila ada).
11	Fisika modern	Pemahaman Asal Mula	Dosen:
	I isika iliodeili	Fisika Kuantum hingga	• Dosen menjelaskan perkembangan fisika kuantum media <i>powerpoint</i>
		Konsep Dualitas	slides, papan tulis, dilengkapi dengan gambar dan video.
		Gelombang Partikel.	Dosen menjawab pertanyaan mahasiswa.
		Aplikasi Fisika Kuantum	Mahasiswa:
		dalam IPTEK.	Mahasiswa dipersilahkan bertanya dan mengungkap gagasan apa saja terkait dengan topik.
			Tugas terstruktur:
			Tugas di kelas:
			Mahasiswa menulis intisari kuliah dipandu dengan pertanyaan
			singkat, mengungkapkan gagasan apa saja terkait dengan topik (bila ada), dan satu pertanyaan (bila ada).
			• Tugos di mumoh.
			Tugas di rumah: Mahasiswa (berkelompok) mengumpulkan tulisan berisikan
			penemuan baru atau aplikasi terkait perkembangan fisika modern, pada bidang tertentu. Dosen akan membagi bidang-bidang tersebut secara acak (waktu: 1 minggu)

12	Fisika Nuklir	 Pemahaman Nuklir. Radioaktivitas dan Risiko Radiasi. Aplikasi Nuklir dalam IPTEK 	 Metode: 1.Dosen menjelaskan tentang pemahaman nuklir, Radioaktivitas dan risiko radiasi, serta contoh aplikasi nuklir dalam IPTEK dengan video dan gambar (60 menit). 2.Dosen memberikan satu topik, misalnya tentang PLTN. Mahasiswa dibagi ke dalam 2 kelompok besar (kelompok setuju dan tidak setuju). Setiap perwakilan kelompok memberikan argumen (Dosen berperan sebagai moderator) (45 menit). 4.Setiap mahasiswa menuliskan dan mengumpulkan hasil diskusi (15 menit).
13	Energi	 Sumber Energi Dunia. Krisis Energi Dunia. Penghematan Energi Dunia. Peran Ilmu Fisika dan Teknik dalam Upaya Penghematan dan Penyediaan Energi Dunia. 	 Metode: Mahasiswa dijelaskan tentang sumber energi dunia, krisis energi dunia, upaya penghematan energi dunia serta contoh peran ilmu fisika dan teknik dalam upaya penghematan dan penyediaan energi dunia, dengan media gambar dan video (30 menit). Mahasiswa dibagi ke dalam kelompok-kelompok. Setiap kelompok mendiskusikan tentang bentuk pemborosan energi dalam kehidupan sehari-hari, serta contoh peran ilmu fisika dan teknik dalam upaya penghematan dan penyediaan energi dunia. (45 menit). Mahasiswa menuliskan hasil diskusi dan menjelaskan secara singkat di depan kelas, disertai dengan tanya jawab (45 menit).
	Cadangan	- Ujian akhir semester	Soal ujian dan metode penilaian disusun bersama menyesuaikan dengan perkembangan setiap kelas. Soal ujian lebih menekankan kemampuan kualitatif, namun terdapat sedikit matematis.

Catatan:

Perkuliahan lebih menekankan kualitatif. Latihan secara kuantitatif akan diberikan pada saat responsi. Evaluasi mahsiswa dari keaktifan diskusi, keaktifan di kelas, tugas terstruktur, ujian tengah semester, dan ujian akhir dengan bobot: keaktifan dan tugas 40%, ujian tengah semester 30%, ujian akhir semester 30%.

Kesimpulan dan Saran

Berdasarkan keluhan mahasiswa tentang perkuliahan dan analisis perkuliahan yang telah berlangsung hingga saat ini, diperlukan perubahan dalam segi materi dan metode pembelajaran. Materi secara umum telah sesuai, namun diperlukan penekanan materi agar tujuan perkuliahan dapat tercapai. Beberapa metode masih dipertahankan karena dianggap masih relevan dan baik bila diterapkan. Perbaikan-perbaikan tersebut adalah:

1. Materi

Telah ditentukan prioritas materi Fisika Dasar 2, berdasarkan aplikasi di bidang industri dan perkembangan IPTEK. Urutan pembagian materi disesuaikan dengan kaitan setiap pokok bahasan. Oleh karena itu listrik-magnet dan gelombang elektromagnetik akan diberikan sebelum UTS dan setelah UTS adalah fisika modern, fisika nuklir, energi, global warming. Penjelasan lebih ditekankan secara kualitatif, sedangkan segi kuantitatif diberikan saat responsi (tutorial). Setiap pokok bahasan dikaitkan dengan aplikasi atau fenomena fisika.

2. Metode

Metode yang digunakan tidak monoton, lebih bervariatif, seperti penjelasan dengan gambar, video, alat peraga, serta diskusi di kelas yang dipandu oleh dosen dengan topik-topik menarik. Telah dibuat contoh panduan perkuliahan dan panduan materi agar input yang diberikan kepada mahasiswa di masing-masing kelas dapat menjadi seragam.

Agar pembelajaran menjadi lebih baik penulis menyarankan melakukan penelitian untuk mengetahui apakah kompetensi yang diharapkan dari mahasiswa menjadi lebih tercapai dengan menerapkan perkuliahan semacam ini.

Daftar Pustaka

- A, Hobson, 2007, *Physics Concepts and Connections*, 4th edition, New Jersey, Pearson Education Inc.
- D.C, Giancoli, 2005, *Physics Principles with Applications*, 6th edition, London, Prentice Hall.
- Rusli A, 2011, *Pedoman Perkuliahan APH 171 dan APH 172 untuk FTI Unpar*, Jurusan Fisika, Universitas Katolik Parahyangan, Bandung.
- Rusli, A, 2011, Fisika Dasar dan Kesadaran Ilmiah: Suatu Studi Analisis Kaitan Fisika dengan Dunia Digital, Universitas Katolik Parahyangan, Bandung.
- Satuan Acara Perkuliahan, 2010, Jurusan Fisika, Fakultas Tenologi Informasi dan Sains, Universitas Katolik Parahyangan, Bandung

http://www.unpar.ac.id

Lampiran 1

SATUAN ACARA PERKULIAHAN (SAP) 2012/2013

FAKULTAS : TEKNOLOGI INDUSTRI

MATA KULIAH : APH 172 dan APH 174– Fisika Dasar II

SEMESTER : 2 (Wajib)
BEBAN STUDI : 2 SKS
DOSEN : Tim Dosen

PRASYARAT :-

TUJUAN:

Memberi wawasan tentang Fisika sebagai landasan perkembangan ilmu dan teknologi, melalui pengajaran konsep dasar serta proses ilmiah Fisika, terutama Listrik-Magnet, Gelombang Elektromagnetik, dan Fisika Modern, serta topik-topik khusus seperti *Global Warming*, Fisika Nuklir, dan Energi, agar dapat meningkatkan esensi terhadap ilmu fisika sebagai ilmu dasar yang menunjang pengembangan IPTEK dan mata kuliah teknik selanjutnya.

Ming	Pokok Bahasan	Tujuan Instruksional	Tujuan Instruksional	Materi	Keg	jiatan	Media	Evaluasi	Sumber
gu		Umum	Khusus		Dosen	Siswa			
1	Tata cara kerja sains, dan kerangka materi kuliah.	Mengenalkan tata cara kerja sains dan pola perkuliahan;	Mahasiswa dapat : - Memahami pola pelaksanaan perkuliahan. - Memahami tata cara kerj sains.	 Tata carakerja sains Pola perkuliahan, 	Menje- laskan	Berta- nya,me- ngung- kapkan gagasan	Komputer, layar dan proyektor (powerpoint slides)	 Keaktifan di kelas dan diskusi Tugas kuliah. Ujian Tengah Semester Ujian Akhir Semester 	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet
2	Listrik Statis	Mengenalkan konsep muatan listrik sebagai penimbul medan listrik dan medan listrik sebagai penimbul gaya listrik. Mengenalkan fenomena listrik statis. Mengenalkan konsep usaha-energi oleh gaya listrik.	Mahasiswa dapat : - Menjelaskan peran muatan listrik dalam menimbulkan medan listrik dan gaya listrik pada muatan lainnya - Menyebutkan dan menjelaskan fenomena listrik statis dalam kehidupan sehari-hari. - Menjelaskan konsep usaha-energi oleh gayalistrik.	-Muatan listrik sebagai suatu sifat khas proton dan elektron; -Gaya Coulomb -Konsep medan listrik (sebagai penimbul gaya tersebut) -Usaha oleh gaya listrik, energi potensial listrik dan potensial listrik	Menje- laskan,	Berta- nya,me- ngung- kapkan gagasan Menco- ba alat peraga	-Komputer, layar dan proyektor (powerpoint slides dilengkapi dengan gambar, animasi, dan video) - Alat peraga	Keaktifan di kelas dan diskusi Tugas kuliah. Ujian Tengah Semester Ujian Akhir Semester	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet

3	Listrik Dinamis	Membahas konsep arus listrik, membahas kekekalan energi dalam rangkaian arus searah, membahas aplikasi atau gejala kelistrikan dalam kehidupan sehari-hari.	Mahasiswa dapat: - Menjelaskan konsep arus listrik dan penggunaan hukum Ohm dalam rangkaian arus searah. - Menjelaskan kekekalan energi dalam rangkaian arus searah - Menyebutkan aplikasi atau gejala kelistrikan dalam kehidupan sehari-hari.	 Arus listrik dan Hukum Ohm. Sumber arus listrik. Kekekalan dan transformasi energi pada rangkaian listrik arus searah. Aplikasi dan gejala kelistrikan. 	Menjel askan	Berta- nya,me- ngung- kapkan gagasan Menco- ba alat peraga	-Komputer, layar dan proyektor (powerpoint slides dilengkapi dengan gambar, animasi, dan video) - Alat peraga	kelas dan diskusi Tugas kuliah. Ujian Tengah Semester Ujian Akhir Semester	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet
4	Listrik-Magnet	Membahas gejala kemagnetan di sekitar muatan bergerak; Membahas induksi elektromagnetik Faraday; Membahas transformasi energi dalam rangkaian arus bolak-balik.	Mahasiswa dapat : - Menghitung besar dan menentukan arah medan magnetik di sekitar muatan bergerak, - Menghitung besar dan menentukan arah medan listrik yang timbul oleh induksi elektromagnetik untuk kasus sederhana, - Menjelaskan konsep rangkaian arus bolakbalik. - Menyebutkan dan menjelaskan konsep fisika dalam aplikasi listrik-magnet terkini.	- Medan magnetik oleh muatan bergerak dan oleh arus listrik Gaya Gerak listrik oleh perubahan medan magnetik - Gaya Lorentz dan pengaruhnya pada muatan yang bergerak dalam medan magnetik - Transformasi energi dalam rangkaian arus bolak balik sederhana.	Menje- laskan	Berta- nya,me- ngung- kapkan gagasan Menco- ba alat peraga.	-Komputer, layar dan proyektor (powerpoint slides dilengkapi dengan gambar, animasi, dan video) - Alat peraga	kelas dan	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet

5	Gelombang	Membahas konsep	Mahasiswa dapat :	-Pengertian	Menje-	Diskusi	Komputer,	• Keaktifan di	 Pustaka
	elektromagnetik	gelombang	- Menjelaskan sifat	gelombang	laskan,	kelom-	layar dan	kelas dan	(referensi)
		elektromagnetik,	gelombang	elektromagnetik	meman	pok.	proyektor	diskusi	 Panduan
		persamaan dan perbedaan	elektromagnetik.	-Persamaan dan	-du	•	(power-point	Tugas kuliah.	materi
		gelombang	- Menjelaskan	perbedaan	diskusi		slides	• Ujian Tengah	perkuliahan
		elektromagnetik dengan	persamaan dan	gelombang			dilengkapi	Semester	• Sumber-
		gelombang mekanik,	perbedaan gelombang	elektromagnetik			dengan	• Ujian Akhir	sumber dari
		spektrum gelombang	elektromagnetik	dengan			gambar,	Semester	internet
		elektromagnetik,	dengan gelombang	gelombang			animasi dan	Semester	
		pemanfaatan dan dampak	mekanik.	mekanik.			video).		
		gelombang	- Menyebutkan dan	-Spektrum					
		elektromagnetik.	menjelaskan spektrum	gelombang					
			gelombang	elektromagnetik					
			elektromagnetik	-Pemanfaatan					
			beserta pemanfaatan	dan dampak					
			dan dampak	gelombang					
			gelombang	elektromagnetik					
			elektromagnetik.	•					
6	Global warming	Membahas pengertian,	Mahasiswa dapat :	-Pengertian,	Menje-	Diskusi	Komputer,		 Pustaka
		penyebab, dan dampak	- Menjelaskan	penyebab, dan	laskan,	kelom-	layar dan	kelas dan	(referensi)
		global warming (efek	pengertian, penyebab,	dampak global	meman	pok	proyektor		 Panduan
		rumah kaca), serta upaya	dan dampak global	warming (efek	-du		(power-point	 Tugas kuliah. 	materi
		mengurangi dampak	warming (efek rumah	rumah kaca),	diskusi		slides	• Ujian Tengah	perkuliahan
		global warming.	kaca), serta upaya	serta upaya			dilengkapi	Semester	 Sumber-
			mengurangi dampak	mengurangi			dengan	• Ujian Akhir	sumber dari
			global warming.	dampak global			gambar,	Semester	internet
			-Mengungkapkan	warming.			animasi dan		
			gagasan mengenai	-Aplikasi ilmu			video).		
			peran ilmu fisika dan	fisika dan					
			teknik dalam	teknik dalam					
			menganggulangi	upaya tersebut.					
			dampak global						
7	Cadangan		warming.						
/	Cauangan	-			l	1			

8	Fisika Modern: Teori relativitas	Menjelaskan kegagalan fisika klasik dan perkembangan fisika modern. Memperkenalkan teori relativitas khusus, teori relativitas umum (kosmologi), hingga fisika kuantum.	Mahasiswa dapat : - Menjelaskan kegagalan fisika klasik dan perkembangan fisika modern. - Menjelaskan perkembangan teori relativitas khusus, teori relativitas umum (kosmologi), hingga fisika kuantum, dan konsep umum secara mendasar.	-Kegagalan fisika klasik dan perkembangan fisika modernPengantar teori relativitas khusus, teori relativitas umum (kosmologi), fisika kuantum.	Menje- laskan,	Berta- nya,me- ngung- kapkan gagasan	Komputer, layar dan proyektor (power-point slides dilengkapi dengan gambar, animasi dan video).	 Keaktifan di kelas dan diskusi Tugas kuliah. Ujian Tengah Semester Ujian Akhir Semester 	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet
9	Postulat relativitas khusus dan konsekuensinya.	Memperkenalkan postulat relativitas khusus dan konsekuensinya ((kontraksi jarak dan dilatasi).	Mahasiswa dapat : -Menjelaskan isi postulat relativitas khususMenjalaskan konsekuensi postulat relativitas khusus - Menjelaskan makna fisis dari persamaan kontraksi jarak dan dilatasi waktu Menyelesaiakn permasalahan terkait kontraksi jarak dan	-Postulat relativitas khusus. -Konsekuensi postulat relativitas khusus -Kontraksi jarak -Dilatasi waktu	Menje- laskan,	Berta- nya,me- ngung- kapkan gagasan	Komputer, layar dan proyektor (power-point slides dilengkapi dengan gambar, animasi dan video).	Keaktifan di kelas dan diskusi Tugas kuliah. Ujian Tengah Semester Ujian Akhir Semester	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet

10	Postulat relativitas khusus dan konsekuensinya.	Memperkenalkan Injutan pembahasan konsekuensi postulat teori relativitas khusus (Kesetaraan massa-energi, kecepatan relativistik).	Mahasiswa dapat : - Menjelaskan konsekuensi postulat relativitas khusus untuk kesetaraan massa-energi dan kecepatan relativistik. - Menjelaskan makna fisis dari persamaan kesetaraan massa- energi dan kecepatan relativistik. - Menyelesaikan permasalahan terkait kesetaraan massa- energi dan kecepatan relativistik.	-Kesetaraan massa-energi -Kecepatan relativistik	Menje- laskan,	Berta- nya,me- ngung- kapkan gagasan	Komputer, layar dan proyektor (power-point slides dilengkapi dengan gambar, animasi dan video).	kelas dan diskusi • Tugas kuliah. • Ujian Tengah	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet
11	Pengantar fisika kuantum, konsep dualitas partikel- gelombang, aplikasi fisika kuantum dalam IPTEK.	Mengenalkan beberapa konsep teori kuantum, dan kaitannya untuk teknologi masa depan	Mahasiswa dapat: - Menjelaskan dampak dualitas partikelgelombang. - Menjelaskan gejala fotolistrik dan efek compton. - Menjelaskan sifat gelombang-partikel. - Menyebutkan aplikasi fisika kuantum dalam perkembangan IPTEK.	-Asal mula fisika kuantum hingga konsep dualitas partikel- gelombang. -Aplikasi fisika kuantum dalam IPTEK.	Menje- laskan,	Berta- nya,me- ngung- kapkan gagasan	Komputer, layar dan proyektor (power-point slides dilengkapi dengan gambar, animasi dan video).	kelas dan diskusi • Tugas kuliah. • Ujian Tengah	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet
12	Fisika Nuklir	Mengenalkan pemahaman nuklir, radioaktivitas dan risiko radiasi serta berbagai aplikasi nuklir dalam IPTEK.	Mahasiswa dapat: - Menjelaskan konsep yang digunakan dalam fisika nuklir. - Menjelaskan dampak radiasi dan cara pencegahan. - Menyebutkan aplikasi fisika nuklir dalam perkembangan IPTEK.	-Pengenalan fisika nuklir. -Radioaktivitas -Risiko radiasi. -Aplikasi nuklir.	Menje- laskan, meman -du diskusi	Diskusi kelom- pok	Komputer, layar dan proyektor (power-point slides dilengkapi dengan gambar, animasi dan video).	kelas dan diskusi • Tugas kuliah • Ujian Tengah	 Pustaka (referensi) Panduan materi perkuliahan Sumber- sumber dari internet

13	Energi	Menjelaskan tentang	Mahasiswa dapat:	-Sumber energi	Menje-	Diskusi	Komputer,	• Keaktifan di	 Pustaka
		sumber energi dunia,	-Menjelaskan tentang	-Krisis energi	laskan,	kelom-	layar dan	kelas dan	(referensi)
		krisis energi dunia, dan	sumber energi dunia,	dunia	meman	pok	proyektor	diskusi	 Panduan
		upaya penghematan	krisis energi dunia, dan	-Upaya	du		(power-point	 Tugas kuliah. 	materi
		energi dunia.	contoh-contoh upaya	penghematan	diskusi		slides	• Ujian Tengah	perkuliahan
			penghematan energi	energi			dilengkapi	Semester	• Sumber-
			dunia dalam kehidupan sehari-hari.				dengan gambar,	• Ujian Akhir	sumber dari
			Schar-harr.				animasi dan	Semester	internet
							video).		
14	Cadangan	-	-	-	-	-	-	-	-

Catatan:

Panduan mengenai metode pembelajaran secara detail dituliskan akan dalam pedoman perkuliahan.

Evaluasi:

- Keaktifan di kelas, keaktifan diskusi, tugas di kelas dan tugas kuliah (40%)
- Ujian Tengah Semester (30%)
- Ujian Akhir Semester (30%)

Referensi:

- A Hobson, *Physics Concepts and Connections*, 4th edition, Pearson, 2007.
 Douglas C. Giancoli, *Physics: Principles and Applications*, 6th edition, Pearson-Prentice-Hall, Inc, USA, 2005.
- 3. Panduan Materi perkuliahan.

Lampiran 2

(Contoh Panduan Materi Perkuliahan)

BAB 5

Gelombang Elektromagnetik

Tujuan:

Memberi <u>wawasan</u> tentang Fisika sebagai landasan perkembangan ilmu dan teknologi, melalui pengajaran konsep dasar serta proses ilmiah Fisika, khususnya terkait Gelombang Elektromagnetik, agar dapat <u>meningkatkan esensi terhadap ilmu fisika</u> sebagai ilmu dasar yang menunjang pengembangan IPTEK dan mata kuliah teknik selanjutnya.

Indikator Keberhasilan:

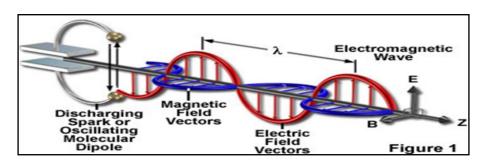
Mahasiswa dapat :

- Menjelaskan sifat gelombang elektromagnetik, persamaan dan perbedaan gelombang elektromagnetik dengan gelombang mekanik.
- Menyebutkan dan menjelaskan spektrum gelombang elektromagnetik beserta pemanfaatan dan dampak gelombang elektromagnetik.
- Mengungkapkan gagasan terkait dengan pengembangan aplikasi atau ide penemuan baru.

Teori Maxwell

Selama tahun 1860-an seorang Fisikawan Inggris James Clerk Maxwell berpikir tentang elektromagnetik, dan merumuskan semua hal yang ia ketahui tentang elektromagnetik dalam sebuah teori. Teori perambatan gelombang elektromagnetik pertama kali dijelaskan pada 1873 oleh James Clerk Maxwell dalam papernya di *Royal Society* mengenai *Teori Dinamika Medan Elektromagnetik* (*A dynamical theory of the electromagnetic field*). Teori Maxwell mengungkapkan tentang konsep medan, dan mendiskripsikan bagaimana muatan listrik menghasilkan medan magnet. Tiga prinsip dasar medan:

- 1. Hukum Gaya Listrik mengungkapkan muatan listik menghasilkan medan listrik,
- 2. Hukum Gaya Magnet mengungkapkan muatan listrik bergerak menghasilkan medan magnet
- 3. Hukum Faraday mangatakan bahwa segala perubahan medan agnet menghasikan medan listrik.


Maxwell seperti halnya fisikawan lain berpendapat bahwa secara alamiah hukum alam yang berlaku semestinya adalah saling bersesuaian, seimbang dan simetri. Menurutnya, hukum tentang kelistrikan dan kemagnetan seharusnya dapat dinyatakan dalam satu teori.

Hukum Faraday mengungkapkan bahwa medan listrik dapat dihasilkan dari medan magnet, Maxwell berpendapat bahwa, sebaliknya, medan magnet dapat dihasilkan dari medan listrik. Keduanya berasal dari muatan listrik. Hukum Maxwell awalnya dinyatakan sebagai hukum keempat, namun

Hukum Maxwell dan Faraday merupakan kesimetrian. Sehingga dapat dikatakan medan listrik dan medan magnet adalah sesuatu hal yang simetri, kesimetrian tersebut menghasilkan istilah <u>elektromagnet</u>. Hal ini kemudian memunculkan gagasan adanya gelombang elektromagnetik. Teori Maxwell diformulasikan secara matematis dan mampu memprediksi waktu perambatan gelombang tersebut.

Perubahan salah satu medan mengakibatkan perubahan pada medan lain, sehingga jika pada suatu titik medan listrik berubah maka pada titik tersebut medan magnetnya berubah dalam waktu yang singkat. Misalnya kita menggoyangkan sisir bermuatan, maka medan pada tersebut akan mentransmisikan medan pada suatu titik di dekatnya, dan titik tersebut menstransmisikan ke yang lebih jauh lagi, demikian seterusnya. Ini menunjukkan bahwa gaya magnet dan listrik tidak ditransmisikan secara instan.

Analisis Maxwell menunjukkan, jika kita memberi gangguan pada medan elektromagnetik pada satu titik, gangguan itu akan bergerak menjauh melalui medan tersebut, dalam bentuk gelombang, sehingga kemudian disebut gerak gelombang (Gambar 5.1). Tetapi gelombang ini bukanlah gelombang yang merambat melalui medium seperti air atau kaca. Medium pada medan elektromagnetik adalah dirinya sendiri. Segala gangguan yang bergerak melalui medan eketromagnetik disebut gelombang elektromagnetik.

Gambar 5.1: Perambatan gelombang elektromagnetik

Gelombang elektromagnetik tidak dapat dilihat secara langsung seperti gelombang air, karena mediumnya adalah medan elektromagnetik itu sendiri. Namun gelombang elektromagnetik dapat dideteksi dengan benda bermuatan atau termagnetisasi pada jarak tertentu dari sumber gelombang pada beberapa saat kemudian setelah gelombang dikirimkan.

Teori Maxwell tidak hanya memprediksi waktu perambatan, namun juga <u>kecepatan</u> <u>perambatan</u>, kecepatan yang terukur adalah <u>300.000 km/s</u>, kecepatan ini sudah diprediksi kira-kira dua abad sebelum teori Maxwell. Tetapi eksperimen sebelumnya tidak memperlihatkan kaitan efek elektromagnetik. Kecepatan ini kita kenal sebagai kecepatan cahaya. Teori Maxwell memprediksi

kecepatan gelombang elektromagnetik sama dengan kecepatan cahaya, sehingga memunculkan hipotesis Maxwell tentang cahaya sebagai salah satu gelombang elektromagnetik .

✓ Pertanyaan:

- 1. Apa perbedaan gelombang elektromagnetik dengan gelombang mekanik (misalnya gelombang bunyi) dalam hal medium perambatannya?
- 2. Menurut Anda, sifat apa saja dari cahaya yang menunjukkan bahwa cahaya adalah salah satu gelombang elektromagnetik?

Percobaan Hertz (1886-1888)

Teori Maxwell mengawali elektromagnetik modern namun banyak ilmuwan pada saat itu yang meragukan kebenaran teorinya tersebut. Teori Maxwell kemudian diperhatikan kembali oleh Heiurich Rudolf Hertz (Jerman) melalui Percobaan Herzt.Hertz meyakini bahwa gelombang elektromagnetik yang dinyatakan Maxwell merupakan gabungan dari gelombang listrik dan gelombang magnetik secara saling tegak lurus. Begitu pula dengan arah geraknya. Karena gelombang tersebut mengandung gelombang listrik, maka Hertz mencoba membuktikan keberadaan gelombang elektromagnetik tersebut melalui keberadaan gelombang listriknya yang diradiasikan oleh rangkaian pemancar.

Hertz membuat rangkaian pemancar sederhana. Karena ada arus pergeseran pada *gap* pemancar, diharapkan ada radiasi gelombang elektromagnetik yang akan dipancarkan. Pada rangkaian penerima tanpa diberikan sumber tegangan apapun, ternyata muncul percikan listrik pada gap-nya. Secara teori, dari percikan yang muncul akan dihasilkan gelombang elektromagnetik. Ini membuktikan ada listrik yang mengalir melalui radiasi suatu benda. yang akhirnya terhantarkan ke rangkaian penerima.

Hertz mencoba untuk menghitung frekuensi pada rangkaian, ternyata frekuensi yang dihasilkan sama dengan frekuensi pemancar. Ini artinya listrik pada rangkaian penerima berasal dari pemancar itu sendiri. Hal ini membuktikan adanya radiasi gelombang elektromagnetik Maxwell. Penemuan Herzt ini saat ini kita kenal sebagai gelombang radio yang merupakan salah satu gelombang elektromagnetik. Ia juga menemukan bahwa secara matematis persamaan elektromagnetik dapat diformulasikan ke persamaan turunan partial disebut persamaan gelombang.

Cepat rambat gelombang elektromagnetik dinyatakan dengan panjang gelombang (λ) dan frekuensi (f) adalah:

$$c = \lambda f$$

Dimana: $c = \text{cepat rambat gelombang elektromagnetik } (3x10^8 \text{ m/s})$

 $\lambda = \text{panjang gelombang (m)}$

f = frekuensi (Hz)

/ Pertanyaan:

- 1. Apa perbedaan gelombang elektromagnetik dengan gelombang mekanik (misalnya gelombang bunyi) dalam hal kecepatan perambatannya?
- 2. Bila frekuensi gelombang radio berbeda-beda, apakah kecepatan perambatannya juga berbeda?
- 3. Gelombang Hertz memiliki frekuensi 10⁹ Hertz, dapatkan radio biasa di rumah menerima gelombang jenis ini?

Gelombang Elektromagnetik Membawa Energi

Hasil percobaan Hertz dan teori Maxwell menunjukkan bahwa gelombang elektromagnetik bukanlah fiksi, namun secara realita benar-benar ada, seperti cahaya. Misalnya radio pemancar mengirim pesan kepada penerima pada sebuah planet, waktu yang dibutuhkan adalah 20 menit. Energi harus diberikan dari pengirim ke penerima agar penerima merespon. Kemanakah energi dari pengirim ke penerima selama 20 menit? Energi bersifat kekal, tidak dapat dimusnahkan, sehingga energi itu harus berada dalam ruang di antara pengirim dan penerima yaitu dalam medan elektromagnetik. Jadi medan elektromagnetik menyimpan energi.

Konsep ini kontradiksi dengan Newtonian bahwa adanya "ruang kosong" dalam konsep atom (diungkapkan oleh Rutherford). Ruang kosong bukanlah suatu yang real, sementara energi adalah real. Pada zaman Newtonian dikembangkan gagasan adanya substansi material gas untuk perambatan cahaya, yang dinamakan eter. Eter didefinisikan sebagai suatu materi yang terbuat dari bahan-bahan yang lebih besar dari atom. Gaya elektromagnetik dan gaya interaksi lain ditransmisikan oleh eter.

Pada waktu itu, Maxwell, Herzt, dll menerima teori eter tentang elektromagnetik, karena tidak ada penjelasan lain terhadap interpretasi mekanik. Kemudian awal abad 20, Einstein, menunjukkan bahwa teori eter tidak benar, yaitu bahwa tidak ada eter. Tetapi yang mengejutkan adalah, tidak ada efek terhadap teori Maxwell tentang interpretasi cahaya dan radio sebagai gelombang elektromagnetik, hal ini hanya mempengaruhi interpretasi mekanik dari medan elektromagnetik. Pemahaman ini mengubah pandangan bahwa medan elektromagnetik bukanlah suatu material substansi.

✓ Pertanyaan:

1. Menurut Anda, apa persamaan teori Maxwell dengan Teori Einstein?

Spektrum Gelombang Elektromagnetik

No	Jenis Gelombang Elektromagnetik	Rentang Panjang Gelombang				
1	Gelombang radio Radio dan Televisi	>1 m				
2	Gelombang Mikro	1mm-1 m				
3	Gelombang Inframerah	700 nm-1000 nm				
4	Cahaya tampak	400 nm – 700 nm				
5	Sinar Ultra Violet	1 nm-400 nm				
6	Sinar-X	0,01 nm-10nm				
7	Sinar Gamma	< 10pm				

✓ Pertanyaan:

- 1. Apakah panjang gelombang televisi atau radio lebih panjang atau lebih pendek daripada gelombang yang terdeteksi oleh mata manusia?
- 2. Menurut Anda, gelombang apa yang memikili energi perambatan terbesar dalam spektrum gelombang elektromagnetik?

Aplikasi Gelombang Elektromagnetik

Radar

Radar (*Radio Detection and Ranging*) merupakan suatu sistem gelombang elektromagnetik, yang berguna untuk mendeteksi, mengukur jarak dan membuat peta benda-benda seperti pesawat terbang, berbagai kendaraan bermotor dan informasi cuaca. Radar akan menangkap gelombang radio atau sinyal yang dipancarkan dan dipantulkan dari suatu benda tertentu. Dari pantulan sinyal dapat ditentukan lokasinya. Meskipun sinyal yang diterima relatif lemah, namun sinyal tersebut dapat dengan mudah dideteksi dan diperkuat oleh radar. Umumnya, radar beroperasi dengan cara mendistribusikan energi elektromagnetik di dalam antena. Ketika ada benda yang masuk ke dalam antena tersebut, maka sinyal dari benda tersebut akan ditangkap dan diteruskan ke pusat sistem radar untuk kemudian diproses sehingga posisi benda tersebut nantinya akan tampak dalam layar monitor.

Pendeteksian keberadaan suatu benda dengan menggunakan gelombang elektromagnetik pertama kali diterapkan oleh Christian Hülsmeyer pada tahun 1904. Istilah radar sendiri pertama kali digunakan pada tahun 1941, menggantikan istilah dari singkatan Inggris RDF (Radio Directon Finding), namun system radar itu sendiri sudah mulai banyak dikembangkan sebelum Perang Dunia II

oleh ilmuwan dari Amerika, Jerman, Prancis dan Inggris. Dari sekian banyak ilmuwan, yang paling berperan penting dalam pengembangan radar adalah Robert Watson-Watt asal Skotlandia, yang mulai melakukan penelitiannya mengenai radar pada tahun 1915. Pada tahun 1920-an, ia bergabung dengan bagian radio National Physical Laboratory. Di tempat ini, ia mempelajari dan mengembangkan peralatan navigasi dan juga menara radio.

Watson-Watt menjadi salah satu orang yang ditunjuk dan diberikan kebebasan penuh oleh Kementrian Udara dan Kementrian Produksi Pesawat Terbang untuk mengembangkan radar. Watson-Watt kemudian menciptakan radar yang dapat mendeteksi pesawat terbang yang sedang mendekat dari jarak 40 mil (sekitar 64 km). Dua tahun berikutnya, Inggris memiliki jaringan stasiun radar yang berfungsi untuk melindungi pantainya. Pada awalnya, radar memiliki kekurangan, yakni gelombang elektromagnetik yang dipancarkannya terpancar di dalam gelombang yang tidak terputus-putus. Hal ini menyebabkan radar mampu mendeteksi kehadiran suatu benda, namun tidak pada lokasi yang tepat. Terobosan pun akhirnya terjadi di tahun 1936 dengan pengembangan radar berdenyut (*pulsed*). Dengan radar ini, sinyal diputus secara berirama sehingga memungkinkan untuk mengukur antara gema untuk mengetahui kecepatan dan arah yang tepat mengenai target.

Sementara itu, terobosan yang paling signifikan terjadi di tahun 1939 dengan ditemukannya pemancar gelombang mikro berkekuatan tinggi yang disempurnakan. Keunggulan dari pemancar ini adalah ketepatannya dalam mendeteksi keberadaan sasaran, tidak peduli dalam keadaan cuaca apapun. Keunggulan lainnya adalah bahwa gelombang ini dapat ditangkap menggunakan antena yang lebih kecil, sehingga radar dapat dipasang di pesawat terbang dan benda-benda lainnya. Hal ini yang pada akhirnya membuat Inggris menjadi lebih unggul dibandingkan negara-negara lainnya di dunia. Pada tahun-tahun berikutnya, sistem radar berkembang lebih pesat lagi, baik dalam hal tingkat resolusi dan portabilitas yang lebih tinggi, maupun dalam hal peningkatan kemampuan sistem radar itu sendiri sebagai pertahanan militer.

(http://en.wikipedia.org/wiki/radar)

✓ Pertanyaan:

Dapatkah Anda menyebutkan gagasan-gagasan kemungkinan pengembangan teknologi radar? Bagaimana dengan pemanfaatan jenis gelombang elektromagnetik yang lain?

✓ Soal-Soal Tantangan

- 1. Berapa lama kira-kira waktu yang dibutuhkan cahaya hingga sampai ke mata dari lampu di rumah?
- 2. Seorang penyanyi dalam sebuah konser musik menyanyikan lagu dengan sebuah *microphone*. Suhu di ruangan tersebut mencapai 30°C akibat penuh sesak penonton. Bandingkan, apakah suara penyanyi tersebut lebih dulu didengar oleh <u>penonton di tempat konser</u> yang berada di posisi 50 m jauhnya dari panggung atau oleh pemirsa di rumah (jarak antara rumah dengan gedung konser sekitar 1000 km) yang <u>menonton dari layar televisi</u> secara *live*? (Petunjuk: kelajuan suara di udara pada suhu 0°C adalah sekitar 330 m/s. Untuk setiap kenaikan 10°C suhu udara, kelajuan suara meningkat sekitar 2%).
- 3. Sinar Ultraviolet berasal dari pancaran cahaya matahari dapat menyebabkan kerusakan pada kulit, dikenal dengan istilah 'sunburn', terutama bila berada di area terbuka seperti pantai, namun hal ini tidak terjadi bila kita berada di dalam ruangan meskipun sinar matahari menembus masuk dalam ruangan. Jelaskan mengapa demikian? Jelaskan pula mengapa sinar ultraviolet tersebut lebih berbahaya pada kulit bukan sinar mataharinya?
- 4. Menurut Anda apa persamaan dan perbedaan gelombang bunyi dan gelombang elektromagnetik?
- 5. Dapatkah gelombang radio memiliki frekuensi seperti gelombang suara?
- 6. Bila terdapat dua gelombang yang memiliki frekuensi yang sama, apakah panjang gelombang keduanya pasti sama?
- 7. Dapatkah dua stasiun radio atau dua televisi berfrekuensi sama? jika dapat, apa akibatnya?
- 8. Seseorang tersesat di tengah hutan, menggunakan senternya, menyalakan dan mematikan sebagai sandi morse. Apakah GEM yang termodulasi tersebut AM (*Amplitude Modulation*) ataukah FM (*Frequency Modulation*)? Berapa kira-kira frekuensinya?
- 9. Jelaskan gelombang apa yang dimanfaatkan dalam mengirim gambar dan suara dari studio rekaman ke televisi di rumah? Mengapa kita sering mendapati gambar yang kabur namun suara tetap jernih, bukan suara kabur/tidak jelas namun gambar jernih.
- 10. Apakah peran gelombang infrared dalam pemanasan global?