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We calculate the static Wilson loop from string/gauge correspondence to obtain the
QQ̄ potential in nonrelativistic quantum field theory, i.e. CFT with Galilean symme-
try. We analyze the convexity conditions13 for QQ̄ potential in this theory, and obtain
restrictions for the acceptable dynamical exponent z.
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1. Introduction

It has been shown by Maldacena that large-N superconformal gauge theories have

a dual description in terms of string theory in AdS space.1 This proposal was

realized by Maldacena to compute the energy between quark (Q) and anti-quark

(Q̄) pairs.2 His method was to calculate expectation values of an operator similar

to the Wilson loop in the large-N limit of field theories. Maldacena’s idea was

improved later by Rey, Theisen, and Yee.3 It turns Wilson loop into a physical

gauge-invariant property that can be read from the string picture. The QQ̄ energy

in the large-N superconformal N = 4 Yang–Mills theory can be obtained from the

Wilson loop of the corresponding string in AdS space. It is proposed that quark and

anti-quark pairs live on the boundary, connected by a U-shaped string in the bulk.

In the discussion on this spacetime, the energy has a non-confining Coulomb-like

behavior, as expected for a conformal field theory. Later this approach was applied

to many other spaces and models, as summarized in Ref. 4.

Recently, gravity duals for a certain Galilean-invariant conformal field theory

has attracted some attention in theoretical high energy physics community.5–9 A

special case when we take the dynamical exponent z = 2 of this theory (whose

isometry is the Schrödinger group Sch(d − 1)) is considered to be the basis in

constructing duality between gravity and unitary Fermi gas. However, our interest
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in this paper is the theory with an arbitrary dynamical exponent z, i.e. Galilean

invariant CFT. In this general scheme, one can discuss the nonrelativistic version

of the AdS/CFT dictionary, i.e. the operator-state correspondence between the

particle on the boundary and the string in the bulk. Scaling transformation in this

nonrelativistic conformal symmetry can be written as8–10

xi → λxi , t → λzt . (1)

The asymptotic metric in this case can be written as

ds2 =
R2

r2

(

− dt2

r2(z−1)
+ dt dξ + (dxi)2 + dr2

)

+ ds2X5
, (2)

where R is the characteristic radius of spacetime, ξ is a compact light-like coor-

dinate, xi for i = 1, . . . , d together with t are the spacetime coordinates on the

boundary where (2) is mapped at r = 0, and finally ds2X5
is the metric of a suitable

internal manifold geometry which allows (2) to be a solution of the supergravity

equations of motion. The extra dimension ξ is usually associated with quantum

numbers interpreted as the particle number. However, the relation between trans-

lation in ξ and its interpretation as particle number operator is still an unclear

topic.11,12 Thus we just set this time-like extra dimension ξ to be constant.

The holographic Wilson loop in nonrelativistic CFT had been studied by Klusoň

in Ref. 11. He assumed general time dependence of ξ and also the moving QQ̄

pair cases in the context of nonrelativistic quantum field theory. His study was

devoted to the spacetime with Galilean symmetry.a Nevertheless, he still does not

include analysis of convexity conditions (12) and (13) yet. One needs to verify

these conditions in QQ̄ potential discussions to make sure that the corresponding

potential function V (L) is a monotone non-decreasing and convex function of the

separation L. The goal of this paper is to verify these conditions for QQ̄ potential,

which is obtained by calculating the Wilson loop in the string picture in Galilean

spacetime. Furthermore, we would like to see the restrictions which may appear for

acceptable dynamical exponent z.

This paper is organized as follows. In Sec. 2, we will perform calculations to

acquire the QQ̄ potential energy in Galilean spacetime. In Sec. 3, we will derive

some conditions for acceptable z due to convexity inequality. Finally in Sec. 4, there

is a summary of our findings.

2. QQ̄ Potential in Nonrelativistic CFT with Galilean Symmetry

We will start with the Nambu–Goto action

S = − 1

2πα′

∫

dτ dσ
√

−detGMN∂αxM∂βxN (3)

for metric (2) where xM = (t, r, ξ, xi), GMN is spacetime metric in (2), and impose

suitable ansatzs in describing static strings, i.e. t = x0 = τ , r = r(σ), x = x(σ),

aFrom now on this will be abbreviated as Galilean spacetime.
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Fig. 1. QQ̄ pair on the boundary as each ends of string.

and ξ = constant. Klusoň in Ref. 11 has considered a more general case for an

extra time-like dimension ξ as a τ -dependent variable, but we can simply set ξ

to be constant (for example as discussed in Ref. 10) since the QQ̄ potential would

depend on their separation distanceb only. The corresponding action can be written

as

S = − T

2πα′

∫

dσ
√

f2(r)((r′)2 + (x′)2) (4)

for f(r) = R2r−(z+1) and we have used ( )′ ≡ ∂σ( ). Variable T in (4) is the loop

period and can be written this way due to the time translation invariance of action

(3) for metric (2). We have followed a standard prescription that has been used

in some literature, for example Refs. 4, 14–18, in obtaining the action (4) as well

as the corresponding QQ̄ potential as a function of QQ̄ pair’s distance. Though

the metric (2.1) is not diagonal, but action (4) leads us to a problem of Wilson

loop computation which can be started by finding a geodesic in the effective two-

dimensional geometry18

(dseff)
2 = f2(r)(dx2 + dr2) . (5)

The equation of motion (geodesic line) from (4) is

dx

dr
= ± f(r0)

√

f2(r)− f2(r0)
. (6)

r0 is the maximum position of the U-shaped string with respect to the r-coordinate

(bulk radius, see Fig. 1). From (6) one can obtain the separation distance of quark

and anti-quark on the boundary, by integrating the geodesic with respect to r. Since

bA distance between Q and Q̄ in our (3+1)-dimensional world, i.e. on the boundary of the Galilean
bulk, see Fig. 1.
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the boundary is at r = 0, then the separation as the function of r0 can be obtained

by the following integration

L(r0) = 2

∫ r0

0

f(r0)
√

f2(r)− f2(r0)
dr . (7)

Related to the expression for the QQ̄ separation above, one may provide such an

illustration as depicted in Fig. 1.

Inserting f(r) = R2r−(z+1) to (7) and using the beta function in our computa-

tion give the following exact result

L(r0, z) = 2

∫ r0

0

rz+1

√

r2z+2
0 − r2z+2

=
2r0

√
π Γ

(

z+2
2z+2

)

Γ
(

1
2z+2

) . (8)

Then we follow a general prescription in Refs. 4, 15, 17 and 18 to compute the

energy between quark and anti-quark. We have a general form of total QQ̄ energy

as

E(r0) =
1

πα′

∫ r0

0

f2(r)
√

f2(r) − f2(r0)
dr − 2mQ , (9)

where mQ is considered as the energy of non-interacting quark.14,15,17,18 Thus the

QQ̄ potential can be written as

VQQ̄(r0) = E(r0)− 2mQ

=
1

πα′

∫ r0

0

f2(r)
√

f2(r) − f2(r0)
dr (10)

which can also be computed by the use of beta function. The potential is

VQQ̄(r0, z) = 2R2rz+1
0

∫ r0

0

dr

rz+1

√

r2z+2
0 − r2z+2

=
2R2

√
π

rz0(2z + 2)

Γ
(

−z
2z+2

)

Γ
(

1
2z+2

) . (11)

In the next section we will see the compatibility of the potential (11) with convexity

conditions.

3. Convexity Conditions and String Embeddings

There are some conditions that should be satisfied by any potential which describes

interaction between quark and anti-quark whose name “convexity” conditions13,18

dV

dL
> 0 (12)

and

d2V

dL2
≤ 0 . (13)
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Condition (12) means quark and anti-quark are attractive everywhere, and (13)

tells us that the potential is a monotone non-increasing function of their separation.

These conditions can be verified as follows:

dVQQ̄(r0, z)

dL(r0, z)
=

dVQQ̄(r0, z)

dr0

dr0
dL(r0, z)

=
−zR2

rz+1
0 (2z + 2)

Γ
(

−z
2z+2

)

Γ
(

z+2
2z+2

) > 0 (14)

and

d2VQQ̄(r0, z)

dL(r0, z)2
=

d
(

dVQQ̄(r0,z)

dL(r0,z)

)

dr0

dr0
dL(r0, z)

=
zR2

4
√
πrz+2

0

Γ
(

1
2z+2

)

Γ
(

−z
2z+2

)

(

Γ
(

z+2
2z+2

))2 ≤ 0 . (15)

The last two equations are inequalities for physically accepted z based on convexity

conditions for the QQ̄ pair.

In Ref. 19, the authors present simple embeddings of duals for nonrelativistic

critical points, where the dynamical critical exponent can take many values z 6= 2.c

They find that z = 1 and z ≥ 3/2 as the possible dynamical critical exponents

that allow string embeddings in gauge/gravity dual picture. From their paper,19 we

could learn that our f(r) would depend on the coordinates of the internal manifold

X5.
d Hartnoll and Yoshida write the non-compact part of the metric which can

accommodate a large number of values of z by the following ansatze

ds2 =
R2

r2

(

− dt2

h2(X5)r2(z−1)
+ dt dξ + (dxi)2 + dr2

)

(16)

which modifies our previous f(r) from R2r−(z+1) to R2r−(z+1)h(X5)
−1. Neverthe-

less, the function h(X5) would not appear in (8) and (11). Thus our findings on the

restrictions for z can be applied to the work of Hartnoll and Yoshida in Ref. 19.

One can verify that conditions (14) and (15) are fulfilled for z = 1, and also for

z ≥ 3/2. The negativity of Γ
(

−z
2z+2

)

for z ≥ 1 guarantees both (14) and (15) are

satisfied.

4. Summary

We have calculated the potential between Q and Q̄ in the nonrelativistic quantum

field theory by using the Wilson loop analysis in the gauge/gravity correspondence

in the Galilean bulk. Our findings are inequalities (14) and (15) for physically

acceptable dynamical exponent z from convexity conditions. Yoshida and Hartnoll19

have found families of z for string embeddings in Galilean spacetime, i.e. z = 1 and

z ≥ 3/2, which agree with inequalities (14) and (15) above.

cI thank Koushik Balasubramanian for informing me this work.
dI thank the reviewer for pointing this out to me.
eWe follow the form of metric by Balasubramanian and McGreevy.9 f(X5) in Ref. 19 is h2(X5)
in this paper.
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