KARAKTERISASI INTERAKSI WIMP-QUARKS DI LHC DENGAN MENGGUNAKAN DEEP LEARNING

Penulis

  • Reinard Primulando Universitas Katolik Parahyangan

Kata Kunci:

Materi gelap, WIMP, LHC, deep learning

Abstrak

Materi gelap merupakan salah satu komponen terbesar dari isi alam semesta yang kita tidak ketahui interaksinya. Large Hadron Collider (LHC) merupakan laboratorium yang dapat digunakan untuk mencari materi gelap terutama dalam bentuk Weakly Interacting Massive Particles (WIMP). Untuk mencari sifat interaksi dari materi gelap, jika ditemukan pada LHC, maka channel sepasang lepton dan missing energy dapat diguanakan. Penelitian ini dilakukan untuk mencari cara untuk membedakan interaksi dari WIMP dengan menggunakan deep feedforward networks. Dengan cara ini didapat akurasi 62,41% dalam membedakan jenis interaksi V+A dan V-A.

Referensi

Aaboud, M., et al. 2018. Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01, 126 (2018)

Alloul, A., et.al. 2014. FeynRules 2.0 - A complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 185, 2250-2300

Alwall J., et.al. 2014. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014)

Arcadi, G. et.al. 2018. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78, no.3, 203 (2018)

Baldi, P. et.al. 2014. Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Commun. 5, 4308

Belayneh, D. et.al. 2020. Calorimetry with deep learning: particle simulation and reconstruction for collider physics. Eur. Phys. J. C 80, no.7, 688 (2020)

Fox, P.J., et.al., 2012. Missing Energy Signatures of Dark Matter at the LHC. Phys. Rev. D 85, 056011 (2012)

Guest, D. et.al. 2018. Deep Learning and its Application to LHC Physics. Ann. Rev. Nucl. Part. Sci. 68, 161-181 (2018)

Lundberg S. and Lee S.I. 2017. A unified approach to interpreting model predictions. Presented at 2017 Conference on Neural Information Processing Systems, Long Beach, California, United States, December 4-9 2017

Sirunyan, A.M, et. al. 2018. Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at √s=13 TeV. Phys. Rev. D 97, no.9, 092005 (2018)

Zyla, P.A. et al. 2020. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 083C01.

##submission.downloads##

Diterbitkan

2021-10-01