• Lamtutur Sri Paulina Pasaribu Politeknik Statistika STIS



Network Analysis; Centrality Measures; Economic Structure; Indonesia


This study aims to identify key sectors in the economy of all provinces in Indonesia by network analysis using Indonesia's Inter-Regional Input-Output (IRIO) tables.  The results of this study show that the most sensitive sector and the sector with the highest ranking in terms of having relationships with other important sectors are the manufacturing industry and its region is dominated by provinces on the island of Java.  Furthermore, the sectors with the highest ratings in terms of their ability to influence resources among other sectors are the manufacturing, construction, transportation, and warehousing industries, and financial services and insurance sectors.  As well as the results of community detection show that sectors that are in the same province and have close geographical distances tend to interact more often. The results of this study also show that the highest rankings of the sector as a whole are dominated by provinces on the island of Java while the lowest is by the Eastern Part of Indonesia.


Angelidis, G., Ioannidis, E., Makris, G., Antoniou, I., & Varsakelis, N. (2020). Competitive conditions in global value chain networks: An assessment using entropy and network analysis. Entropy, 22(10).

Armelly, A., Rusdi, M., & Pasaribu, E. (2021). Analisis sektor unggulan perekonomian Indonesia: Model input-output. Sorot, 16(2), 119.

Blöchl, F., Theis, F. J., Vega-Redondo, F., & Fisher, E. O. N. (2011). Vertex centralities in input-output networks reveal the structure of modern economies. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(4), 1–8.

Cahyono, B., & Sumargo, B. (2005). Mengartikulasikan Tabel Input-Output dan Kerangka Analisisnya. The Winners, 6(1), 33.

Can, U., & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis problems and applications. Physica A: Statistical Mechanics and Its Applications, 535, 122372.

Cerina, F., Zhu, Z., Chessa, A., & Riccaboni, M. (2015). World input-output network. PLoS ONE, 10(7), 1–21.

Cingolani, I., Panzarasa, P., & Tajoli, L. (2017). Countries’ positions in the international global value networks: Centrality and economic performance. Applied Network Science, 2(1).

Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70(6), 6.

Cuello, F. A., Mansouri, F., & Hewings, G. J. D. (1992). The Identification of Structure at the Sectoral level: A Reformulation of the Hirschman-Rasmussen Key Sector Indices. Economic Systems Research, 4(4), 285–296.

de Santana Ribeiro, L. C., Pereira, E. J. de A. L., Perobelli, F. S., & Pereira, H. B. de B. (2022). Sectoral Interdependence, Network Analysis, and Regional Resilience in Brazil. Latin American Business Review, 0(0), 1–29.

Del Río-Chanona, R. M., Grujić, J., & Jensen, H. J. (2017). Trends of the world input and output network of global trade. PLoS ONE, 12(1), 1–14.

DePaolis, F., Murphy, P., & Kaluza, M. C. D. (2020). Identifying Key Sectors in the Regional Economy: A Network Analysis Approach Using Input-Output Data. August.

Freeman, L. C. (1979). Centrality in social networks. Social Networks, 1(3), 215–239.

Jin, Y., Xu, Y., Li, R., Zhao, C., & Yuan, Z. (2022). Comprehensive Evaluation of China’s Input–Output Sector Status Based on the Entropy Weight-Social Network Analysis Method. Sustainability, 14(21), 14588.

Mankiw, N. G. (2019). Macroeconomics. Worth Publishers.

Martin, R., & Gardiner, B. (2019). The resilience of cities to economic shocks: A tale of four recessions (and the challenge of Brexit). Papers in Regional Science, 98(4), 1801–1832.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

Niemira, M., Collin, F., Szalkowska, A., Bielska, A., Chwialkowska, K., Reszec, J., Niklinski, J., Kwasniewski, M., & Kretowski, A. (2020). Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: Identification of key modules and genes by weighted gene co-expression network analysis (WGCNA). Cancers, 12(1).

Oinas, P., Trippl, M., & Höyssä, M. (2018). Regional industrial transformations in the interconnected global economy. Cambridge Journal of Regions, Economy and Society, 11(2), 227–240.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

Pons, P., & Latapy, M. (2006). Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), 191–218.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1118–1123.

Sun, X., An, H., & Liu, X. (2018). Network analysis of Chinese provincial economies. Physica A: Statistical Mechanics and Its Applications, 492, 1168–1180.

Syofya, H., & Rahayu, S. (2018). Peran Sektor Pertanian terhadap Perekonomian Indonesia (Analisis Input-Output). Manajemen Dan Kewirausahaan, 9(3), 91.

Wang, T., Xiao, S., Yan, J., & Zhang, P. (2021). Regional and sectoral structures of the Chinese economy: A network perspective from multi-regional input–output tables. Physica A: Statistical Mechanics and Its Applications, 581, 126196.

Widyawati, R. F. (2017). Analisis Keterkaitan Sektor Pertanian Dan Pengaruhnya Terhadap Perekonomian Indonesia (Analisis Input Ouput). Jurnal Economia, 13(1), 14.

Xing, L., Dong, X., & Guan, J. (2017). Global industrial impact coefficient based on random walk process and inter-country input–output table. Physica A: Statistical Mechanics and Its Applications, 471, 576–591.

Zhang, P., Wang, T., & Yan, J. (2021). PageRank centrality and algorithms for weighted, directed networks with applications to World Input-Output Tables.