Pendekatan Ekonomi Spasial Untuk Kejahatan Hak Milik Di Wilayah Polda Jawa Barat

Authors

  • Gelora Islami Putri

DOI:

https://doi.org/10.26593/be.v23i2.4693.1%20-%2024

Keywords:

Keywords: property crime; socio-economic factors; spatial analysis; Jawa Barat Regional Police

Abstract

Property crime is a crime with economic motives. Research on crime from an economic perspective is needed in Indonesia because of the limited study of crime behavior associated with socio-economic conditions, even though the number of crimes related to the region can be related to social, economic, and spatial factors. Socio-economic factors such as income and unemployment can be used to explain differences in crime amounts. Crime is analyzed with spatial aspects because crime events in one region can be associated with crime events in other areas that intersect. The purpose of this study is to verify the spatial dependence in cases of property crime in the West Java Regional Police. The West Java Regional Police are among the three regional police with the highest property crime in Indonesia. Socio-economic factors such as income and unemployment have a positive correlation with the number of property crime in the West Java Regional Police. Through spatial analysis using the global Moran index, the results of this study found that the number of property crime cases in Jawa Barat Regional Police did not have spatial autocorrelation. Through LISA, the results of research in the period 2013-2015, indicate a significant increase in the area each year. In 20 regencies/cities in Jawa Barat Regional Police, only five regencies have significant spatial correlations with their neighbors, namely Majalengka Regency, Tasikmalaya Regency, Kuningan Regency, Sukabumi Regency, and Purwakarta Regency.

Keywords: property crime; socio-economic factors; spatial analysis; Jawa Barat Regional Police

References

Ajimotokin, S., Haskins, A., & Wade, Z. (2015). The effects of unemployment on crime rates in the

U.S. Diambil kembali dari theeffectsofunemploymentoncimerates.pdf

Anselin, L. (1988). Spatial econometrics: Method and models. Dodrecht, Netherland: Kluwer

Academic Publishers.

Anselin, L. (1992). Spatial data analysis with GIS: An introduction to application in the social

sciences. University of California. Santa Barbara: National Center for Geographic

Information and Analysis.

Anselin, L. (1994). Exploratory spatial data analysis and geographic information systems. In New

tools for spatial analysis, 17, 45-54.

Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. International

Regional Science Review, 26(2), 153-166.

Badan Pusat Statistik. (2016). Provinsi Jawa Barat dalam angka 2016. Badan Pusat Statistik.

Badan Pusat Statistik. (2016). Statistik kriminal 2016. Badan Pusat Statistik.

Becker, G. S. (1968). Crime and punishment: An economic approach. Journal of Political Economy,

(2), 169-217.

Becsi, Z. (1999). Economics and crime in the states. Federal Reserve Bank of Atlanta - Economic

Review, 84(1), 38-56.

Bender, K. & Theodossiou, I. (2016). Economic fluctuations and crime: Temporary and persistent

effects. Journal of Economic Studies, 43(4), 609-623. doi:10.1108/JES-05-2015-0085

Brosnan, S. (2018). The socioeconomic determinants of crime in Ireland from 2003-2012. The

Economic and Social Review, 49(2), 127-143.

Volume 23 No 2 Tahun 2019 | 19

Bushway, S., & Reuter, P. (2001). Labor Markets and Crime. Dalam J. Q. Wilson, & J. Petersilia,

Crime: Public policies for crime control(hal. 191-224). Oakland: Institute for Contemporary

Studies Press.

Cerulli, G., Ventura, M., & Baum, C. F. (2018). The economic determinants of crime: An approach

through responsiveness scores. Boston College Working Papers in Economics 948. Diambil

kembali dari http://fmwww.bc.edu/EC-P/wp948.pdf

Dhewy, R. C. (2015). Analisis spasial autokorelasi pada data persentase wanita pernah kawin dan

tidak pernah menggunakan alat/cara KB di Provinsi Lampung. Jurnal Edukasi, 1(2), 197-

Dona, F. M. & Setiawan, S. (2015). Pemodelan faktor-faktor yang mempengaruhi tingkat

kriminalitas di Jawa Timur dengan analisis regresi spasial. Jurnal Sains dan Seni ITS, 4(1),

-78

Donohue, J. J., & Levitt, S. D. (2000). The impact of legalized abortion on crime. NBER Working

Paper No. 8004. Diambil kembali dari https://www.nber.org/papers/w8004.pdf

Ehrlich, I. (1973). Participation in illegitimate activities: A theoretical and empirical investigation.

Journal of Political Economy, 81(3), 521-565. Diambil kembali dari

https://www.jstor.org/stable/1831025

Ehrlich, I. (1996). Crime, punishment, and the market for offenses. The Journal of Economic

Perspectives, 10(1), 43-67.

Entorf, H., & Spengler, H. (2000). Socioeconomic and demographic factors of crime in Germany:

Evidence from panel data of the German States. International Review of Law and

Economics, 20(1), 75-106. doi:10.1016/S0144-8188(00)00022-3

Erdogan, S., Yalcin, M., & Dereli, M. A. (2013). Exploratory spatial analysis of crimes against

property in Turkey. Crime, Law, and Social Change, 59(1), 63-78.

Francesca, M. C., & Uberti, T. E. (2008). Geographical distribution of crime in Italian Provinces: A

spatial econometric analysis. Fondazione Eni Enrico Mattei, 29(1), 1-28.

Haga, W. J. (1987). A survey of economics models of criminal behavior. Monterey: Personnel

Security Research and Education Center.

Hardianto, F. N. (2009, Agustus). Analisis faktor-faktor yang mempengaruhi tingkat kriminalitas

di Indonesia dari pendekatan ekonomi. Bina Ekonomi Majalah Ilmiah Fakultas Ekonomi

Unpar, 13(2), 28-41.

Hsieh, C.-C., & Pugh, M. D. (1993). Poverty, income inequality, and violent crime: A meta-analysis

of recent aggregate data studies. Crime Justice Review, 18(2), 182-202.

Kawachi, I., Kennedy, B. P., & Wilkinson, R. G. (1999). Crime: Social disorganization and relative

deprivation. Social Science & Medicine, 48(6), 719-731. doi:10.1016/S0277-

(98)00400-6

Khan, N., Ahmad, J., Nawaz, M., & Zaman, K. (2015).The socio-economic determinant of crime in

Pakistan: New evidence on an old debate. Arab Economics and Bussiness Journal, 10(2), 73-

Kosfeld, R. (2006). Spatial econometrics. Diambil kembali dari https://www.unikassel.de/fb07/fileadmin/datas/fb07/5-

Institute/IVWL/Kosfeld/lehre/spatial/SpatialEconometrics1.pdf

Lee, K. (2017). Crime (Unemployment and). Encyclopedia of Law and Economics, 1-6.

doi:10.1007/978-1-4614-7883-6_684-1.

Levitt, S. D. (2004). Understanding why crime fell in the 1990s: Four factors that explain the

decline and six that do not. Journal of Economic Perspectives, 18(1), 163-190.

Machin, S., & Meghir, C. (2004). Crime and economic incentives. The Journal of Human Resources,

(4), 958-979. doi:10.2307/3559034

Masfiatun. (2019). Pengaruh faktor ekonomi terhadap jumlah kejahatan (crime total) di Indonesia

(2015-2017). Jurnal Keamanan Nasional, 5(2), 89-110

Nugroho, A. H., & Harmadi, S. H. (2015). Analisis spasial kriminalitas harta benda di wilayah

Jadetabek. Jurnal Ekonomi dan Pembangunan Indonesia, 15(2), 158-172.

O'Sullivan, A. (2007). Urban economics, 6th edition. New York: McGraw-Hill.

Pfeiffer, D. U., Robinson, T. P., Steven, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. (2008).

Spatial analysis in epidemiology. Oxford University Press.

Phillips, L., Votey, H. L., & Maxwell, D. (1972). Crime, youth, and the labor market. Journal of

Political Economy, 80(3), 491-504.

Raphael, S., & Winter-Ebmer, R. (2001). Identifying the effect of unemployment on crime. The

Journal of Law and Economics, 44(1), 259-283.

Wang, C., G, Wan, & X. Zhang. (2017). Which dimension of income distribution drives crime?

Evidence from the people’s Republic of China. ADBI Working Paper 704. Diambil kembali

dari https://www.adb.org/sites/default/files/publication/236561/adbi-wp704.pdf

Wuryandari, T., Hoyyi, A., Kusumawardani, D. S., & Rahmawati, D. (2014). Identifikasi autokorelasi

spasial pada jumlah pengangguran di Jawa Tengah menggunakan indeks moran. Media

Statistika, 7(1), 1-10.

Yearwood, D. L., & Koinis, G. (2011). Revisiting property crime and economic conditions: An

exploratory study to identify predictive indicators beyond unemployment rates. The

Social Science Journal, 48(1), 145-158. doi:10.1016/j.soscij.2010.07.015

Zhukov, Y. M. (2010). Spatial autocorrelation. Diambil kembali 2 November 2018, dari IQQS,

Harvard University.

Downloads

Published

2022-01-21