Pengendalian Kualitas Produksi Lembaran Baja Melalui Klasifikasi Jenis Cacat Permukaan Menggunakan CNN

Penulis

  • Dina Indarti Universitas Gunadarma
  • Asep Mohamad Noor Universitas Gunadarma

DOI:

https://doi.org/10.26593/jrsi.v12i2.5862.165-172

Kata Kunci:

cacat permukaan, convolutional neural network, klasifikasi, lembaran baja, pengendalian kualitas

Abstrak

Pengendalian kualitas produksi lembaran baja dengan persepsi visual manusia sering kali terjadi kesalahan dan membutuhkan waktu yang lebih lama. Implementasi deep learning dalam pengendalian kualitas produksi lembaran baja dapat memiliki akurasi yang baik dan dilakukan secara real-time. Klasifikasi jenis cacat permukaan pada lembaran baja merupakan hal yang penting dalam pengendalian kualitas produksi lembaran baja secara otomatis. Dengan mengklasifikasikan jenis cacat menggunakan deep learning dapat mengidentifikasi dan menghilangkan penyebab terjadinya cacat saat produksi lembaran baja dengan cepat. Penelitian ini bertujuan untuk mengendalikan kualitas produksi lembaran baja secara otomatis melalui klasifikasi jenis cacat permukaan menggunakan Convolutional Neural Network (CNN). Model CNN yang digunakan pada penelitian ini yaitu CNN dengan transfer learning dari 5 pre-trained model Resnet50, VGG-16, VGG-19, Inception V3, dan Xception. Terdapat 6 jenis cacat permukaan yang diklasifikasikan yaitu crazing, inclusion, pitted, patches, rolled, dan scratch. Penelitian dimulai dengan pengambilan data citra lembaran baja yang memiliki cacat permukaan. Jumlah citra yang digunakan dalam penelitian ini yaitu 1.800 citra terdiri dari 1.152 data pelatihan, 288 data validasi, dan 360 data pengujian. Selanjutnya dilakukan preprocessing yaitu normalisasi, augmentasi, dan one-hot encoding. Setelah preprocessing dilakukan pelatihan dan validasi menggunakan transfer learning dari 5 pre-trained model. Model hasil pelatihan digunakan pada tahap pengujian. Hasil pelatihan dan validasi menunjukkan bahwa Xception memiliki kinerja terbaik karena nilai akurasi pelatihan dan validasi tertinggi, nilai loss pelatihan dan validasi terendah, serta GAP validasi dan loss terendah. Hasil pengujian menunjukkan bahwa transfer learning dari pre-trained model Xception memiliki kinerja terbaik dengan akurasi sebesar 98%.

Biografi Penulis

Dina Indarti, Universitas Gunadarma

Teknik Industri dan Manajemen

Asep Mohamad Noor, Universitas Gunadarma

Teknik Industri dan Manajemen

Referensi

Bansal, A. (2020). Identification and Classification of Defects in Steel Sheets using Deep Learning Models [National College of Ireland]. http://norma.ncirl.ie/4432/1/akanshabansal.pdf

Bissi, L., Baruffa, G., Placidi, P., Ricci, E., Scorzoni, A., & Valigi, P. (2013). Automated defect detection in uniform and structured fabrics using Gabor filters and PCA. Journal of Visual Communication and Image Representation, 24(7), 838–845. https://doi.org/10.1016/j.jvcir.2013.05.011

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800–1807. https://doi.org/10.1109/CVPR.2017.195

Han, J., Kamber, M., & Pei, J. (2011). Data Mining Concepts and Techniques (3rd ed.). Elsevier.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Kaggle. (2020). Metal Surface Defects Dataset. https://www.kaggle.com/fantacher/neu-metal-surface-defects-data

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980

Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J., & Brezina, J. (2020). Steel surface defect classification using deep residual neural network. Metals, 10(6), 1–15. https://doi.org/10.3390/met10060846

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

Luo, Q., Fang, X., Liu, L., Yang, C., & Sun, Y. (2020). Automated Visual Defect Detection for Flat Steel Surface: A Survey. IEEE Transactions on Instrumentation and Measurement, 69(3), 626–644. https://doi.org/10.1109/TIM.2019.2963555

Mazur, I., & Koinov, T. (2016). Quality Control system for a hot-rolled metal surface. Frattura Ed Integrità Strutturale, 10(37), 287–296. https://doi.org/10.3221/IGF-ESIS.37.38

Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6th ed.). John Wiley & Son.

Qayyum, R., Kamal, K., Zafar, T., & Mathavan, S. (2016). Wood Defects Classification Using GLCM Based Features And PSO Trained Neural Network. 22nd International Conference on Automation and Computing (ICAC), 273–277. https://doi.org/https://doi.org/10.1109/IConAC.2016.7604931

Russell, S., & Norvig, P. (2021). Artificial Intelligence A Modern Approach. Pearson.

Sharifzadeh, M., Alirezaee, S., Amirfattahi, R., & Sadri, S. (2008). Detection of steel defect using the image processing algorithms. 2008 IEEE International Multitopic Conference, 125–127. https://doi.org/10.1109/INMIC.2008.4777721

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2818–2826. https://doi.org/10.1109/CVPR.2016.308

Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), 9(10), 143–150. https://doi.org/10.29322/IJSRP.9.10.2019.p9420

Torrey, L., & Shavlik, J. (2010). Transfer Learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques (pp. 242–264). IGI Global.

Vergara-Villegas, O. O., Cruz-Sánchez, V. G., de Jesús Ochoa-Domínguez, H., de Jesús Nandayapa-

Alfaro, M., & Flores-Abad, Á. (2014). Automatic Product Quality Inspection Using Computer Vision

Systems. In Lean Manufacturing in the Developing World (pp. 135–156). Springer International Publishing. https://doi.org/10.1007/978-3-319-04951-9_7

Zhang, C., Sargent, I., Pan, X., Gardiner, A., Hare, J., & Atkinson, P. M. (2018). VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4507–4521. https://doi.org/10.1109/TGRS.2018.2822783

Zhou, S., Chen, Y., Zhang, D., Xie, J., & Zhou, Y. (2017). Classification of surface defects on steel sheet using convolutional neural networks. Materiali in Tehnologije, 51(1), 123–131. https://doi.org/10.17222/mit.2015.335

##submission.downloads##

Diterbitkan

2023-10-25