Oversampling Sintetis Berbasis Kopula untuk Model Klasifikasi dengan Data yang Tidak Seimbang
DOI:
https://doi.org/10.26593/jrsi.v12i1.6380.1-10Kata Kunci:
oversampling sintetis, kopula, model klasifikasi, distribusi Metalog. K-Nearest NeighborAbstrak
Model klasifikasi berbasis pembelajaran mesin untuk mendeteksi anomali biasanya didasarkan pada data dengan proporsi yang tidak seimbang. Proporsi data anomali biasanya jauh lebih kecil dibandingkan proporsi data non anomali. Ketidakseimbangan data menyebabkan model klasifikasi lebih banyak melakukan pembelajaran dengan data non anomali sehingga model bisa bias. Salah satu metode yang banyak digunakan untuk mengatasi masalah ini adalah oversampling sintetis. Oversampling sintetis umumnya didasarkan pada jarak dan didominasi metode berbasis k-Nearest Neighbor. Secara umum, pola data bisa berdasarkan jarak atau hubungan korelasional. Penelitian ini bertujuan menawarkan metode oversampling sintetis berdasarkan hubungan korelasional dalam bentuk distribusi probabilitas bersama dari data aslinya. Distribusi probabilitas bersama direpresentasikan dengan kopula Gaussian, sedangkan distribusi probabilitas marjinalnya direpresentasikan menggunakan tiga alternatf distribusi, yaitu sistem distribusi Pearson, distribusi empiris, dan sistem distribusi Metalog. Metode ini dibandingkan dengan beberapa metode oversampling lain yang umum digunakan untuk data yang tidak seimbang. Implementasi dilakukan dalam masalah kredit macet nasabah kartu kredit di suatu bank dengan metode klasifikasi k-Nearest Neighbor dengan ukuran kinerja akurasi total dengan metode validasi k-fold cross validation. Didapati bahwa model klasifikasi dengan metode oversampling usulan menggunakan distribusi marjinal Metalog memiliki akurasi total tertinggi.
Referensi
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus : An R Package for Fitting Distributions. Journal of Statistical Software, 64(4). https://doi.org/10.18637/jss.v064.i04
Durante, F., & Sempi, C. (2016). Principles of Copula Theory. Chapman and Hall/CRC. https://doi.org/10.1201/b18674
Faber, I., & Jung, J. (2021). rmetalog: The Metalog Distribution.
García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowledge-Based Systems, 25(1), 13–21. https://doi.org/10.1016/j.knosys.2011.06.013
Haibo He, Yang Bai, Garcia, E. A., & Shutao Li. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969
Keelin, T. W. (2016). The Metalog Distributions. Decision Analysis, 13(4), 243–277. https://doi.org/10.1287/deca.2016.0338
Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92–122. https://doi.org/10.1007/s10618-012-0295-5
Patel, H., Singh Rajput, D., Thippa Reddy, G., Iwendi, C., Kashif Bashir, A., & Jo, O. (2020). A review on classification of imbalanced data for wireless sensor networks. International Journal of Distributed Sensor Networks, 16(4), 155014772091640. https://doi.org/10.1177/1550147720916404
Pearson, K. (1895). X. Contributions to the mathematical theory of evolution.—II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186, 343–414. https://doi.org/10.1098/rsta.1895.0010
Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., & Firth, D. (2021). MASS: Support Functions and Datasets for Venables and Ripley’s MASS (7.3-54). https://cran.r-project.org/package=MASS
Rubinstein, R. Y. (Ed.). (1981). Simulation and the Monte Carlo Method. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316511
Sáez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE–IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Information Sciences, 291, 184–203. https://doi.org/10.1016/j.ins.2014.08.051
Siriseriwan, W. (2019). smotefamily: a collection of oversampling techniques for class imbalance problem based on SMOTE.
Tahir, M. A., Kittler, J., & Yan, F. (2012). Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognition, 45(10), 3738–3750. https://doi.org/10.1016/j.patcog.2012.03.014
Theodoridis, S. (2015). Machine Learning: A Bayesian and Optimization Perspective (1st ed.). Elsevier.
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. Springer New York. https://doi.org/10.1007/978-0-387-21706-2
Wang, K.-J., Makond, B., Chen, K.-H., & Wang, K.-M. (2014). A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Applied Soft Computing, 20, 15–24. https://doi.org/10.1016/j.asoc.2013.09.014
Wong, G. Y., Leung, F. H. F., & Ling, S.-H. (2014). An under-sampling method based on fuzzy logic for large imbalanced dataset. 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1248–1252. https://doi.org/10.1109/FUZZ-IEEE.2014.6891771
Zhang, H., & Li, M. (2014). RWO-Sampling: A random walk over-sampling approach to imbalanced data classification. Information Fusion, 20, 99–116. https://doi.org/10.1016/j.inffus.2013.12.003