Pemelajaran Mesin untuk Pengendalian Mutu pada Proses Produksi Tekstil Tradisional

Penulis

  • Vina Sari Yosephine Institut Teknologi Harapan Bangsa
  • Tabitha Hanna Institut Teknologi Harapan Bangsa
  • Marla Setiawati
  • Ari Setiawan Institut Teknologi Harapan Bangsa

DOI:

https://doi.org/10.26593/jrsi.v13i1.7173.165-174

Kata Kunci:

pengendalian mutu, industri tekstil tradisional, machine learning, digitalisasi

Abstrak

Industri tekstil UMKM biasanya bersifat padat karya dan traditional sehingga sulit bersaing di era transformasi digital. Penelitian ini berfokus untuk menerapkan teknologi machine learning pada proses pengendalian mutu dalam industri tekstil tradisional. Untuk itu, akan dirancang teknologi berbasis computer vision yang dapat melakukan identifikasi dan klasifikasi kain selama proses produksi berlangsung. Model machine learning diterapkan pada aplikasi berbasis web dan mobile yang mudah digunakan oleh pekerja industri padat karya. Sebagai metode validasi, dilakukan juga studi kasus  di kota Bandung Indonesia untuk menguji keefektifan algorima dalam manufaktur tekstil. Penelitian ini menggabungkan teknologi informasi yang dapat mengoptimalkan produksi, meningkatkan kualitas produk, dan meningkatkan daya saing. Model machine learning dalam penelitian ini menunjukkan akurasi yang tinggi, berkisar antara 75% hingga 100% dalam berbagai kondisi pencahayaan di lingkungan manufaktur tekstil sesungguhnya sehingga dapat diterapkan dalam pengendalian kualitas.

Biografi Penulis

Vina Sari Yosephine, Institut Teknologi Harapan Bangsa

Industrial Engineering

Tabitha Hanna, Institut Teknologi Harapan Bangsa

Industrial Engineering

Ari Setiawan, Institut Teknologi Harapan Bangsa

Industrial Engineering

Referensi

Amaral, A. and Peças, P. (2021). SMEs and Industry 4.0: Two Case Studies of Digitalization for a Smoother Integration. Computers in Industry, 125, 103333.

Dutta, G. et al. (2021). Digitalization Priorities of Quality Control Processes for SMEs: A Conceptual Study in Perspective of Industry 4.0 Adoption. Journal of Intelligent Manufacturing, 32(6), 1679–1698.

Galata, D.L. et al. (2021). Applications of Machine Vision in Pharmaceutical Technology: A Review. European Journal of Pharmaceutical Sciences, 159, 105717.

Javaid, M. et al. (2022). Exploring Impact and Features of Machine Vision for Progressive Industry 4.0 Culture. Sensors International, 3, 100132.

Kim, J.-C. and Moon, I.-Y. (2020). A Study on Smart Factory Construction Method for Efficient Production Management in Sewing Industry. Journal of Information and Communication Convergence Engineering, 18(1), 61–68.

Kim, J.-O., Traore, M.K. and Warfield, C. (2006). The Textile and Apparel Industry in Developing Countries. Textile Progress, 38(3), 1–64.

Konstantinidis, F.K., Mouroutsos, S.G. and Gasteratos, A. (2021). The Role of Machine Vision in Industry 4.0: An Automotive Manufacturing Perspective. Accessed from: https://ieeexplore.ieee.org/abstract/document/9651453 [25 September 2023].

Koulali, I. and Eskil, M.T. (2021). Unsupervised Textile Defect Detection Using Convolutional Neural Networks. Applied Soft Computing, 113, 107913.

Lee, S.-E., Ju, N. and Lee, K.-H. (2021). Visioning the Future of Smart Fashion Factories Based on Media Big Data Analysis. Applied Sciences, 11(16), 7549.

Ouyang, W. et al. (2019). Fabric Defect Detection Using Activation Layer Embedded Convolutional Neural Network. IEEE Access, 7, 70130–70140.

Saberironaghi, A., Ren, J. and El-Gindy, M. (2023). Defect Detection Methods for Industrial Products Using Deep Learning Techniques: A Review. Algorithms, 16(2), 95.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.

Wang, X., Wu, G. and Zhong, Y. (2019). Fabric Identification Using Convolutional Neural Network. Artificial Intelligence on Fashion and Textiles: Proceedings of the Artificial Intelligence on Fashion and Textiles (AIFT) Conference 2018, Hong Kong, July 3–6, 2018 (pp. 93-100). Springer International Publishing.

Wu, D. and Sun, D.-W. (2013). Colour Measurements by Computer Vision for Food Quality Control – A Review. Trends in Food Science & Technology, 29(1), 5–20.

Yasuda, Y.D.V. et al. (2022). Aircraft Visual Inspection: A Systematic Literature Review. Computers in Industry, 141, 103695.

Zhong, Z. and Ma, Z. (2021). A Novel Defect Detection Algorithm for Flexible Integrated Circuit Package Substrates. Accessed from:https://ieeexplore.ieee.org/document/9351787 [25 September 2023].

##submission.downloads##

Diterbitkan

2024-04-26