Estimasi Keandalan Sistem Mekanikal Dependen Menggunakan Fungsi Copula

Penulis

  • Adhitya Ryan Ramadhani Universitas Pertamina
  • Waskito Pranowo Universitas Pertamina

DOI:

https://doi.org/10.26593/jrsi.v13i2.7219.103-112

Kata Kunci:

Keandalan, Fungsi Copula, Sistem Mekanikal, Kasus dependensi, Korelasi

Abstrak

Paper ini mengatasi tantangan dalam menilai keandalan sistem mekanikal kompleks di mana komponen-komponennya secara inheren berkorelasi dalam mode kegagalan mereka. Secara tradisional, asumsi independen di antara komponen-komponen ini telah digunakan, tetapi seringkali gagal untuk menangkap kompleksitas dunia nyata. Untuk mengatasi keterbatasan ini, fungsi copula diperkenalkan sebagai metodologi yang kuat untuk memodelkan hubungan yang saling bergantung antara variabel-variabel yang berkorelasi dalam sistem mekanikal. Paper ini bertujuan untuk mendemonstrasikan kegunaan copula dalam memperkirakan keandalan sistem dengan mempertimbangkan dependensi ini. Hasil penelitian menunjukkan bahwa copula Clayton muncul sebagai model yang paling cocok untuk merepresentasikan dependensi dalam sistem-sistem seperti itu. Yang lebih penting, estimasi keandalan yang diperoleh melalui metode berbasis copula tidak hanya mencerminkan interdependensi yang kompleks dengan akurat, tetapi juga sejalan dengan prinsip-prinsip teori batas keandalan. Penelitian ini menggarisbawahi potensi estimasi keandalan berbasis copula sebagai alternatif yang aplikatif, menawarkan penilaian keandalan yang lebih komprehensif dan akurat dalam sistem mekanikal kompleks dan memiliki potensi besar untuk aplikasi rekayasa praktis. Metode yang diusulkan dapat digunakan untuk memodelkan hubungan antar variabel yang sering kali diabaikan dalam praktik rekayasa.

Biografi Penulis

Adhitya Ryan Ramadhani, Universitas Pertamina

Mechanical Engineering

Waskito Pranowo, Universitas Pertamina

Geophysical Engineering

Referensi

Amini, A., Abdollahi, A., Hariri-Ardebili, M. A., & Lall, U. (2021). Copula-based reliability and sensitivity analysis of aging dams: Adaptive Kriging and polynomial chaos Kriging methods. Applied Soft Computing, 109, 107524. https://doi.org/10.1016/j.asoc.2021.107524

An, H., Yin, H., & He, F. (2016). Analysis and Application of Mechanical System Reliability Model Based on Copula Function. Polish Maritime Research, 23(s1), 187–191. https://doi.org/10.1515/pomr-2016-0064

Aritonang, Y. M. K. (2023). Pengembangan Pendekatan Matematis dan Penyelesaiannya untuk Reliabilitas Sistem Dengan Distribusi Kegagalan Berbeda. Jurnal Rekayasa Sistem Industri, 12(1), 35–42. https://doi.org/10.26593/jrsi.v12i1.6318.35-42

Avontuur, G. C., & van der Werff, K. (2002). Systems reliability analysis of mechanical and hydraulic drive systems. Reliability Engineering & System Safety, 77(2), 121–130. https://doi.org/10.1016/S0951-8320(02)00039-X

Bian, L., Wang, G., & Liu, P. (2023). Reliability analysis for k -out-of- n (G) systems subject to dependent competing failure processes. Computers & Industrial Engineering, 177, 109084. https://doi.org/10.1016/j.cie.2023.109084

Chen, R., Zhang, C., Wang, S., & Qian, Y. (2021). Reliability estimation of mechanical seals based on bivariate dependence analysis and considering model uncertainty. Chinese Journal of Aeronautics, 34(5), 554–572. https://doi.org/10.1016/j.cja.2020.12.001

de Reffye, J., & Dersin, P. (2010). Mechanical Reliability of a point system. IFAC Proceedings Volumes, 43(3), 86–91. https://doi.org/10.3182/20100701-2-PT-4012.00016

Feizabadi, M., & Jahromi, A. E. (2017). A new model for reliability optimization of series-parallel systems with non-homogeneous components. Reliability Engineering & System Safety, 157, 101–112. https://doi.org/10.1016/j.ress.2016.08.023

Gu, Y.-K., Fan, C.-J., Liang, L.-Q., & Zhang, J. (2022). Reliability calculation method based on the Copula function for mechanical systems with dependent failure. Annals of Operations Research, 311(1), 99–116. https://doi.org/10.1007/s10479-019-03202-5

Hu, Y., Ding, Y., Wen, F., & Liu, L. (2019). Reliability Assessment in Distributed Multi-State Series-Parallel Systems. Energy Procedia, 159, 104–110. https://doi.org/10.1016/j.egypro.2018.12.026

Jiang, D., Chen, T., Xie, J., Cui, W., & Song, B. (2023). A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism. Reliability Engineering & System Safety, 230, 108922. https://doi.org/10.1016/j.ress.2022.108922

Li, H., Huang, H.-Z., Li, Y.-F., Zhou, J., & Mi, J. (2018). Physics of failure-based reliability prediction of turbine blades using multi-source information fusion. Applied Soft Computing, 72, 624–635. https://doi.org/10.1016/j.asoc.2018.05.015

Li, Y., Xia, T., Chen, Z., & Pan, E. (2023). Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems. Reliability Engineering & System Safety, 230, 108905. https://doi.org/10.1016/j.ress.2022.108905

Liu, Z., Tao, F. H., & Jia, C. Z. (2012). Application of Copula in Reliability Theory. Applied Mechanics and Materials, 217–219, 2746–2749. https://doi.org/10.4028/www.scientific.net/AMM.217-219.2746

Louzada, F., Tomazella, V. L. D., Gonzatto, O. A., Bochio, G., Milani, E. A., Ferreira, P. H., & Ramos, P. L. (2022). Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime. Reliability Engineering & System Safety, 222, 108364. https://doi.org/10.1016/j.ress.2022.108364

Maukar, A. L., Sosodoro, I. W., & Adiprabowo, R. (2016). Scheduling Preventive Maintenance on Auto Rooting Machine at Toys Manufacturer Company. Jurnal Rekayasa Sistem Industri, 5(1), 26. https://doi.org/10.26593/jrsi.v5i1.1910.26-30

Mustaqim, F., Kosasih, W., & Ahnad, A. (2020). Pemeliharaan Mesin Hydraulic Shear Menggunakan Pendekatan Reliability Centered Maintenance dan Manajemen Suku Cadang. Jurnal Rekayasa Sistem Industri, 9(3), 153–162. https://doi.org/10.26593/jrsi.v9i3.4023.153-162

Nelsen, R. B. (2006). An Introduction to Copulas. Springer New York. https://doi.org/10.1007/0-387-28678-0

Pranowo, W., & Ramadhani, A. R. (2023). A Comparison of Python-Based Copula Parameter Estimation for Archimedean-Based Asymmetric Copulas. SN Computer Science, 4(2), 207. https://doi.org/10.1007/s42979-023-01674-8

Ramadhani, A., Khan, F., Colbourne, B., Ahmed, S., & Taleb-Berrouane, M. (2021). Environmental load estimation for offshore structures considering parametric dependencies. Safety in Extreme Environments. https://doi.org/10.1007/s42797-021-00028-y

Ramadhani, A., Khan, F., Colbourne, B., Ahmed, S., & Taleb-Berrouane, M. (2022a). Resilience assessment of offshore structures subjected to ice load considering complex dependencies. Reliability Engineering & System Safety, 222, 108421. https://doi.org/10.1016/j.ress.2022.108421

Ramadhani, A., Khan, F., Colbourne, B., Ahmed, S., & Taleb-Berrouane, M. (2022b). Resilience assessment of offshore structures subjected to ice load considering complex dependencies. Reliability Engineering & System Safety, 222, 108421. https://doi.org/10.1016/j.ress.2022.108421

Stern, R. E., Song, J., & Work, D. B. (2017). Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity. Reliability Engineering & System Safety, 164, 1–9. https://doi.org/10.1016/j.ress.2017.01.021

Tang, X.-S., Li, D.-Q., Zhou, C.-B., & Zhang, L.-M. (2013). Bivariate distribution models using copulas for reliability analysis. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 227(5), 499–512. https://doi.org/10.1177/1748006X13481928

Wang, F., & Li, H. (2019). A non-parametric copula approach to dependence modelling of shear strength parameters and its implications for geotechnical reliability under incomplete probability information. Computers and Geotechnics, 116, 103185. https://doi.org/10.1016/j.compgeo.2019.103185

Wei, Y., & Liu, S. (2023). Reliability analysis of series and parallel systems with heterogeneous components under random shock environment. Computers & Industrial Engineering, 179, 109214. https://doi.org/10.1016/j.cie.2023.109214

Woo, S., & O’Neal, D. L. (2019). Reliability design and case study of mechanical system like a hinge kit system in refrigerator subjected to repetitive stresses. Engineering Failure Analysis, 99, 319–329. https://doi.org/10.1016/j.engfailanal.2019.02.015

Wu, X. Z. (2015). Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils and Foundations, 55(5), 1243–1258. https://doi.org/10.1016/j.sandf.2015.09.023

Xiahou, T., Zheng, Y.-X., Liu, Y., & Chen, H. (2023). Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems. Reliability Engineering & System Safety, 233, 109120. https://doi.org/10.1016/j.ress.2023.109120

Xiao, N.-C., Yuan, K., & Zhan, H. (2022). System reliability analysis based on dependent Kriging predictions and parallel learning strategy. Reliability Engineering & System Safety, 218, 108083. https://doi.org/10.1016/j.ress.2021.108083

Yu, S., & Wang, Z. (2018). A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures. Journal of Mechanical Design, 140(5). https://doi.org/10.1115/1.4039387

##submission.downloads##

Diterbitkan

2024-10-22