Optimasi Berbasis GIS untuk Perancangan Rute Distribusi Gas Bumi: Studi Kasus PT Gagas Energi Indonesia

Penulis

  • Nur Layli Rachmawati Universitas Pertamina

DOI:

https://doi.org/10.26593/jrsi.v13i1.6507.59-68

Kata Kunci:

biaya transportasi, distribusi gas, optimasi berbasis GIS, MTVRPTW-SPD, penentuan rute

Abstrak

PT Gagas Energi Indonesia merupakan perusahaan yang bergerak dalam usaha niaga dan gas bumi, salah satunya adalah Gaslink C-Cyl. Penentuan rute untuk distribusi Gaslink C-Cyl dilakukan secara subyektif yang didasarkan pada kedekatan lokasi antar pelanggan, sehingga menciptakan rute yang tidak optimal, mempengaruhi jumlah kendaraan yang dibutuhkan, dan menyebabkan tingginya biaya transportasi. Berdasarkan hal tersebut, penelitian ini bertujuan untuk meminimasi biaya transportasi dengan menetapkan rute dan jumlah kendaraan yang optimal menggunakan Multi Trip Vehicle Routing Problem Time Windows Simultaneous Pickup and Delivery (MTVRPTW-SPD). Permasalahan ini diselesaikan menggunakan optimasi berbasis Geographic Information System (GIS). Untuk menunjukkan kinerja hasil optimasi berbasis GIS, dilakukan perbandingan antara kondisi eksiting dan hasil optimasi untuk 50 titik permintaan. Kemudian dikembangkan dua skenario, yakni dengan 100 dan 200 titik permintaan untuk menunjukkan implikasi keputusan terhadap ketidakpastian permintaan. Berdasarkan hasil optimasi untuk 50 titik permintaan didapatkan hasil yang lebih baik dibandingkan kondisi eksisting ditinjau dari sisi jumlah kendaraan yang dibutuhkan, total jarak tempuh, dan total biaya transportasi, dimana masing-masing mengalamani penurunan sebesar 3 unit, 46,5%, dan 43,5% secara berturut-turut.

Biografi Penulis

Nur Layli Rachmawati, Universitas Pertamina

Teknik Industri

Referensi

Cattaruzza, D., Absi, N., & Feillet, D. (2016). The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates. Transportation Science, 50(2), 1-18. doi:https://doi.org/10.1287/trsc.2015.0608

Cueto, P. F., Gjeroska, I., Vilalta, A. S., & Anjos, M. F. (2021). A Solution Approach for Multi-Trip Vehicle Routing Problems with Time Windows, Fleet Sizing, and Depot Location. Networks, 78(4). doi:https://doi.org/10.1002/net.22028

Faiz, S., Krichen, S., & Inoubli, W. (2014). A DSS Based on GIS and Tabu Search For Solving The CVRP: The Tunisian Case. The Egyptian Journal of Remote Sensing and Space, 17(1), 105-110. doi:https://doi.org/10.1016/j.ejrs.2013.10.001

Garside, A. K., & Laili, N. R. (2019). A Cluster-First Route-Second Heuristic Approach to Solve Periodic Multi-Trip Vehicle Routing Problem. Jurnal Teknik Industri, 20(2), 172-181. doi:https://doi.org/10.22219/JTIUMM.Vol20.No2.172-181

Hashi, E. K., Hasan, M. R., & Zaman, M. S. (2016). GIS Based Heuristic Solution of the Vehicle Routing Problem to Optimize the School Bus Routing and Scheduling. 19th International Conference on Computer and Information Technology (pp. 56-60). doi:10.1109/ICCITECHN.2016.7860167

Huang, N., Li, J., Zhu, W., & Qin, H. (2021). The Multi-Trip Vehicle Routing Problem with Time Windows and Unloading Queue at Depot. Transportation Research Part E: Logistics and Transportation Review, 152(102370). doi:https://doi.org/10.1016/j.tre.2021.102370

Kenaka, S. P., & Suprayogi. (2021). Comparison Study of Neighborhood Structures in Local Search for Vehicle Routing Problem with Multiple Trips and Time Windows. Jurnal Teknik Industri, 23(2), 161-169. doi:10.9744/jti.23.2.161-170

Koç, Ç., Laporte, G., & Tükenmez, İ. (2020). A Review on Vehicle Routing with Simultaneous Pickup and Delivery. Computers and Operations Research, 122. doi:https://doi.org/10.1016/j.cor.2020.104987

Krichen, S., Faiz, S., Tlili, T., & Tej, K. (2014). Tabu-Based GIS for Solving the Vehicle Routing Problem. Expert Systems with Applications, 41(14), 6483-6493. doi:https://doi.org/10.1016/j.eswa.2014.03.028

Özceylan, E., Koç, Ç., & Erbaş, M. (2018). A GIS-Based Optimization Method for a Vehicle Routing Problem Arising at a Supermarket Store Chain. Sigma Journal of Engineering and Natural Sciences, 36(3), 741-766.

Panicker, V. V., & Mohammed, I. O. (2018). Solving a Heterogeneous Fleet Vehicle Routing Model - A Practical Approach. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-5). Pondicherry, India: IEEE. doi:10.1109/ICSCAN.2018.8541149

Rachmawati, D., & Gustin, L. (2020). Analysis of Dijkstra’s Algorithm and A* Algorithm in Shortest Path Problem. Journal of Physics Conference Series, 1566, 1-7. doi:10.1088/1742-6596/1566/1/012061

Redi, A. P., Zahra, F., Islami, P. A., Rachmawati, N. L., Nadlifatin, R., & Supranartha, A. (2021). Simulated Annealing Algorithm for Vehicle Routing Problem with Simultaneous Pick Up and Delivery: A Case Study of Liquid Petroleum Gas Distribution. The Second Asia Pacific International Conference on Industrial Engineering and Operations Management. Surakarta, Indonesia.

Rosita, A., Falahah, & Sanjaya, E. A. (2017). Pengembangan Aplikasi WebGIS Data Penelitian Puslitbang X dengan Pendekatan Y WebGIS Development Methodology. Prosiding Seminar Nasional GEOTIK (pp. 313-319). Muhammadiyah University Press.

Singamsetty, P., & Thenepalle, J. K. (2021). Designing Optimal Route for the Distribution Chain of a Rural LPG Delivery System. International Journal of Industrial Engineering Computations, 12(2), 221-234. doi:10.5267/j.ijiec.2020.11.001

Yuliza, E., Puspita, F. M., Yahdin, S., & Emiliya, R. (2020). Solving Capacitated Vehicle Routing Problem Using of Clarke and Wright Algorithm and LINGO in LPG Distribution. Journal of Physics: Conference Series, 1663. doi:10.1088/1742-6596/1663/1/012027

##submission.downloads##

Diterbitkan

2024-04-26