Evaluasi Life Cycle Cost Produksi Campuran Aspal Modifikasi Skala Laboratorium

Penulis

  • Christian Gerald Daniel Universitas Pelita Harapan
  • Fadhil M Firdaus Air Quality Research Analyst
  • Mazmuria Irene Imanuella Universitas Katolik Parahyangan

DOI:

https://doi.org/10.26593/jrsi.v13i1.7259.37-46

Kata Kunci:

Life Cycle Cost, Cradle-to-Gate, Campuran aspal, Produksi

Abstrak

Riset ini membandingkan life cycle cost (LCC) dari beberapa jenis teknologi campuran aspal yang ditambahkan dengan bahan polimer yang digunakan untuk memodifikasi bitumen dengan campuran aspal serta mengevaluasi tinjauan kritis dari tiap jenis campuran dengan lingkup berupa cradle-to-gate dari tahap akuisisi bahan baku hingga produksi 7 kg sampel untuk masing-masing tipe. Penggunaan bitumen modifikasi polimer menghasilkan harga terbesar yakni IDR 12,197, diikuti oleh aspal campuran hangat dan panas modifikasi polimer dengan perbedaan hingga 3% dan 14.5%, serta metode produksi campuran aspal panas standar menghasilkan nilai terkecil (IDR 9,344) sebesar 23.4% dibandingkan nilai terbesar. Harga bahan baku memberi kontribusi terbesar hingga mencapai 82.7% sementara konsumsi listrik berkontribusi sebanyak 30%. Tahap pemanasan dalam oven memberi kontribusi terbesar untuk dampak dari proses produksi di lab mencapai 40 hingga 60%, diikuti oleh kegiatan pencampuran dengan selisih 10 - 30%. Dapat disimpulkan bahwa LCC dari campuran aspal sangat terpengaruh oleh harga bahan baku serta konsumsi energi listrik, serta campuran aspal panas standar menghasilkan LCC terendah, walaupun menghasilkan nilai yang lebih tinggi pada tahap produksi sampel dibandingkan campuran aspal hangat.

Biografi Penulis

Christian Gerald Daniel, Universitas Pelita Harapan

Jurusan Teknik Sipil

Fadhil M Firdaus, Air Quality Research Analyst

Air Quality Research Analyst

Mazmuria Irene Imanuella , Universitas Katolik Parahyangan

Fakultas Ilmu Sosial dan Ilmu Politik

Referensi

Apostolidis, P., Liu, X., Daniel, C. G., Erkens, S., & Scarpas, T. (2020). Effect of Synthetic Fibres on Fracture Performance of Asphalt Mortar. Road Materials and Pavement Design, 21(7), 1918–1931. https://doi.org/10.1080/14680629.2019.1574235

Arendt, R., Bachmann, T. M., Motoshita, M., Bach, V., & Finkbeiner, M. (2020). Comparison of Different Monetization Methods in LCA: A review. Sustainability, 12(24), 1–39. https://doi.org/10.3390/su122410493

Badan Pusat Statistik. (2022). Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2019-2021. https://www.bps.go.id/indicator/17/57/1/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis.html

Brasileiro, L., Moreno-Navarro, F., Tauste-Martínez, R., Matos, J., & Rubio-Gámez, M. del C. (2019). Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A review. Sustainability, 11(3). https://doi.org/10.3390/su11030646

Cristobal-Garcia, J., Reale, F., Sala, S., Pant, R., & European Commission. Joint Research Centre. (2016). Life cycle Assessment for the Impact Assessment of Policies. Publications Office.

Daniel, C. G. (2020). Analysis of the Effect of Using Fiber Aramid-Polyolefin on the Strength, Stiffness, and Durability of Warm-Mix Asphalt. Jurnal Teknik Sipil ITB, 27(1), 9–16. https://doi.org/http://dx.doi.org/10.5614%2Fjts.2020.27.1.2

Daniel, C. G., Canny, K., Firdaus, F. M., & Iskandar, D. B. (2023). Studi Komparasi Dampak Lingkungan Produksi Campuran Aspal Hangat Modifikasi Polimer EVA dengan Campuran Aspal Panas Skala Laboratorium Menggunakan Life Cycle Assessment (LCA). TEKNIK, 44(1), 23–38. https://doi.org/10.14710/teknik.v44i1.52052

Daniel, C. G., Liu, X., Apostolidis, P., Erkens, S. M. J. G., & Scarpas, A. (2021). Low-temperature Fracture Behaviour of Synthetic Polymer-fibre Reinforced Warm Miix Asphalt. Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements (1st ed., Vol. 1, Issue 3, pp. 358–362). Taylor & Francis. https://doi.org/https://doi.org/10.1201/9781003251125

Daniel, C. G., Liu, X., Apostolidis, P., Erkens, S., & Scarpas, A. (2019). Impact of Synthetic Fibres on Asphalt Concrete Mix. Bituminous Mixtures and Pavements VII- Proceedings of the 7th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2019, 709–711. https://doi.org/10.1201/9781351063265-96

Daniel, C. G., Rifqon, M., Firdaus, F. M., & Canny, K. A. (2023). Perbandingan Dampak Lingkungan Produksi Skala Laboratorium Campuran Aspal Modifikasi Polimer Dengan Metode Campuran Basah dan Kering Menggunakan Life Cycle Assessment (LCA). Jurnal Jalan Dan Jembatan, 40(1), 17–31.

Daniel, C. G., Widjajakusuma, J., Otto, I., & Saputan, C. (2022). The Evaluation of Physical and Mechanical Properties of Synthetic Polymer Modified Hot and Warm Mix Asphalt. IOP Conference Series: Earth and Environmental Science, 1117(1), 012002. https://doi.org/10.1088/1755-1315/1117/1/012002

Dirjen Bina Marga. (2018). Spesifikasi Umum Bina Marga 2018.

Dutta, A. (2014). A General Study On Life Cycle Cost Analysis For Roads [National Institute Of Technology Rourkela].

Fazaeli, H., Samin, Y., Pirnoun, A., & Dabiri, A. S. (2016). Laboratory and Field Evaluation of the Warm Fiber Reinforced High Performance Asphalt Mixtures (Case Study Karaj – Chaloos Road). Construction and Building Materials, 122, 273–283. https://doi.org/10.1016/j.conbuildmat.2016.05.139

Gao, H., Zhang, L., Zhang, D., Ji, T., & Song, J. (2021). Mechanical Properties of Fiber-reinforced Asphalt Concrete: Finite Element Simulation and Experimental Study. E-Polymers, 21(1), 533–548. https://doi.org/10.1515/epoly-2021-0057

Gibson, N., & Li, X. (2015). Characterizing Cracking of Asphalt Mixtures with Fiber Reinforcement: Use of Cyclic Fatigue And Direct Tension Strength Tests. Transportation Research Record, 2507, 57–66. https://doi.org/10.3141/2507-07

Giustozzi, F., Crispino, M., Toraldo, E., & Mariani, E. (2015). Mix Design of Polymer-Modified and Fiber-Reinforced Warm-Mix Asphalts with High Amount of Reclaimed Asphalt Pavement: Achieving Sustainable and High-Performing Pavements. Transportation Research Record, 2523, 3–10. https://doi.org/10.3141/2523-01

Hao, J., Cao, P., Liu, Z., Wang, Z., & Xia, S. (2017). Developing of a SBS Polymer Modified Bitumen to Avoid Low Temperature Cracks in the Asphalt Facing of A Reservoir in a Harsh Climate Region. Construction and Building Materials, 150, 105–113. https://doi.org/10.1016/j.conbuildmat.2017.05.200

Ho, C. H., Shan, J., Wang, F., Chen, Y., & Almonnieay, A. (2016). Performance of Fiber-Reinforced Polymer-Modified Asphalt: Two-Year Review in Northern Arizona. In Transportation Research Record (Vol. 2575, pp. 138–149). National Research Council. https://doi.org/10.3141/2575-15

Horne, R., Grant, T., & Verghese, K. (2009). Life Cycle Assessment: Origins, Principles and Context. Life Cycle Assessment - Principles, Practice and Prospects (Vol. 53, Issue 9, p. 287). CSIRO Publishing.

Jaskuła, P., Stienss, M., & Szydłowski, C. (2017). Effect of Polymer Fibres Reinforcement on Selected Properties of Asphalt Mixtures. Procedia Engineering, 172, 441–448. https://doi.org/10.1016/j.proeng.2017.02.026

JRC Science Hub. (2016). Guide for Interpreting Life Cycle Assessment Result.

Kadek, I., Putra Igmas, A., Padma Devia, Y., & Negara, K. P. (2023). Life Cycle Cost Analysis to Maintain Material Construction on Hotel Development Project Batu. Rekayasa Sipil, 17(2), 186–191.

Karaman Öztaş, S. (2018). The Limitations of LCA Methodology Towards Sustainable Construction Materials. Lecture Notes in Civil Engineering, 6, 102–113. Springer. https://doi.org/10.1007/978-3-319-63709-9_8

Klopffer, W., & Grahl, B. (2014). Life Cycle Assessment (LCA) - A Guide to Best Practice (Vol. 148). Wiley - VCH.

Kompas.com. (2023, April 2). Daftar Tarif Listrik per KwH yang Berlaku Mulai April-Juni 2023. https://www.kompas.com/tren/read/2023/04/02/141500765/daftar-tarif-listrik-per-kwh-yang-berlaku-mulai-april-juni-2023

Li, Z., & Madanu, S. (2009). Highway Project Level Life-Cycle Benefit/Cost Analysis under Certainty, Risk, and Uncertainty: Methodology with Case Study. Journal Of Transportation Engineering, 516–526. https://doi.org/10.1061/ASCETE.1943-5436.0000012

Liang, S., Gu, H., Bilek, T., & Bergman, R. (2019). Life-Cycle Cost Analysis of a Mass Timber Building: Methodology and Hypothetical Case Study. www.fpl.fs.fed.us.

Maisham, M., Adnan, H., Adillah Ismail, N. A., & Asyikin Mahat, N. A. (2019). Developing a Research Methodology for Life Cycle Costing Framework for Application in Green Projects. IOP Conference Series: Earth and Environmental Science, 385(1). https://doi.org/10.1088/1755-1315/385/1/012066

Mearig, T., & Morris, L. (2018). Life Cycle Cost Analysis Handbook.

Menufandu, F., Setyawan, A., & Yulianto, B. (2017). Life Cycle Cost Analysis (LCCA) in Road Organization Application in Supiori Regency of Papua Province.

Montanelli, Eng. F., & srl, I. (2013). Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA). Procedia - Social and Behavioral Sciences, 104, 39–48. https://doi.org/10.1016/j.sbspro.2013.11.096

Nationale Milieu Database. (2022). Environmental Performance Assessment Method for Construction Works.

Nizamuddin, S., Boom, Y. J., & Giustozzi, F. (2021). Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers (Vol. 13, Issue 19). MDPI. https://doi.org/10.3390/polym13193242

Okhotnikova, E. S., Frolov, I. N., Ganeeva, Y. M., Firsin, A. A., & Yusupova, T. N. (2019). Rheological Behavior of Recycled Polyethylene Modified Bitumens. Petroleum Science and Technology, 37(10), 1136–1142. https://doi.org/10.1080/10916466.2019.1578796

Petrović, B., Zhang, X., Eriksson, O., & Wallhagen, M. (2021). Life Cycle Cost Analysis of a Single-Family House In Sweden. Buildings, 11(5). https://doi.org/10.3390/buildings11050215

Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9(4). MDPI. https://doi.org/10.3390/app9040742

Poulikakos, L. D., L.D.Poulikakos, C.Papadaskalopoulou, B.Hofko, F.Gschösser, Falchetto, A. C., M.Bueno, M.Arraigada, J.Sousa, R.Ruiz, C.Petit, M.Loizidou, & M.N.Partl. (2017). Harvesting the Unexplored Potential of European Waste Materials for Road Construction. Resources, Conservation and Recycling, 32–44.

Rasane, K., & Ambre, H. (2019). A Study on Life Cycle Cost Analysis for Roads. International Research Journal of Engineering and Technology.

Ratajczak, M., & Wilmański, A. (2020). Evaluation of Laboratory Methods of Determination of Sbs Content in Polymer-Modified Bitumens. Materials, 13(22), 1–16. https://doi.org/10.3390/ma13225237

Reyes, H. E., Bojórquez, J., Cruz-Reyes, L., Ruiz, S. E., Reyes-Salazar, A., Bojórquez, E., Barraza, M., Formisano, A., Payán, O., & Torres, J. R. (2022). Development an Artificial Neural Network Model for Estimating Cost of R/C Building by Using Life-Cycle Cost Function: Case Study of Mexico City. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/7418230

Shell Bitumen. (n.d.). SHELL CARIPHALTE - Maximize Performance, Seize Opportunities.

US Department of Transportation. (1998). Life-Cycle Cost Analysis in Pavement Design.

Wang, H. (2021). Crumb Rubber Modified Bitumen Experimental Characterization and Modelling [Delft University of Technology].

Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Rheological Behavior and Its Chemical Interpretation of Crumb Rubber Modified Asphalt Containing Warm-Mix Additives. Transportation Research Record, 2672(28), 337–348. https://doi.org/10.1177/0361198118781376

Wang, H., Liu, X., van de Ven, M., Lu, G., Erkens, S., & Skarpas, A. (2020). Fatigue Performance of Long-Term Aged Crumb Rubber Modified Bitumen Containing Warm-Mix Additives. Construction and Building Materials, 239. https://doi.org/10.1016/j.conbuildmat.2019.117824

##submission.downloads##

Diterbitkan

2024-04-26