Kajian Eksperimental untuk Mengukur Kinerja Ground Granulated Blast Furnace Slag sebagai Pengganti Sebagian Semen terhadap Kekuatan Tekan dan Sorptivitas Self-Compacting Mortar

Authors

DOI:

https://doi.org/10.26593/josc.v4i1.7805

Keywords:

ground granulated blast furnace slag, kekuatan tekan, self-compacting mortar, sorptivitas

Abstract

Peningkatan pembangunan infrastruktur di Indonesia, berdampak pada permintaan semen yang semakin meningkat. Industri semen menyumbangkan sekitar 8% emisi karbondioksida di dunia yang signifikan memberikan dampak buruk bagi lingkungan. Ground Granulated Blast Furnace Slag (GGBFS), yang merupakan limbah indutri padat, dapat dimanfaatkan menjadi salah satu alternatif bahan substitusi sebagian semen untuk membuat material konstruksi yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pemanfaatan limbah industri yaitu GGBFS sebagai substitusi semen pada mortar mutu tinggi untuk membuat self-compacting mortar (SCM). Variasi substitusi sebagian semen dengan GGBFS yang diambil untuk membuat SCM adalah sebesar 0%, 10% dan 20%. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dari sustitusi sebagian semen dengan GGBFS terhadap kekuatan tekan dan sorptivitas. Rasio air terhadap binder (w/b) diambil sebesar 0,3. Berdasarkan hasil yang telah diperoleh, kekuatan tekan SCM pada variasi 20% mencapai 61,8 MPa pada umur 28 hari. Pada campuran yang sama, diperoleh nilai initial absorption sebesar 0,0076 dan secondary absorption sebesar 0,0024 yang mengindikasikan campuran dengan substitusi sebagian semen dengan GGBFS sebesar 20% memiliki tingkat penyerapan air yang rendah dan memiliki durabilitas yang baik. Pemanfaatan GGBFS sebagai substitusi sebagian semen memiliki manfaat yang positif untuk menciptakan material konstruksi yang ramah lingkungan.

References

Lehne, J dan Preston, F, Making Concrete Change: Innovation in Low-carbon Cement and Concrete. Chatham House, 2018.

Seto, K C, Dhakal, S, Bigio, A, Blanco, H, Delgado, G C, Dewar, D, Huang, L, Inaba, A, Kansal, A, Lwasa, S, McMahon, J, Müller, D B, Murakami, J, Nagendra, H dan Ramaswami, A, Human Settlements, Infrastructure and Spatial Planning. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014.

Ahmad, J, Kontoleon, K J, Majdi, A, Naqash, M T, Deifalla, A F, Kahla, N B, Isleem, H F dan Qaidi, S M A, "A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production," Sustainability, vol. 14, no.(14), hal. 8783, 2022, doi: 10.3390/su14148783.

Djayaprabha, H S, Chang, T-P, Shih, J-Y dan Nguyen, H-A, "Improving the mechanical and durability performance of No-cement self compacting concrete by fly ash," J. Mater. Civ. Eng., vol. 32, no.(9), hal. 04020245, 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003281.

Yuksel, I, Blast-furnace Slag. In: Waste and Supplementary Cementitious Materials in Concrete Characterisation, Properties and Applications. Woodhead Publishing Series, 2018.

Sandybay, S, Shon, C S, Tukaziban, A, Syzdykov, D, Orynbassarov, I, Zhang, D dan Kim, J R, "Blended Basic Oxygen Furnace (BOF) Slag with Ground Granulated Blast Furnace Slag (GGBFS) as a Pozzolanic Material," Materials Science Forum, vol. 1053, hal. 331-337, 2022, doi: 10.4028/p-q7n2cu.

Okamura, H dan Ouchi, M, "Self-Compacting Concrete," J. Adv. Concr. Technol, vol. 1, no.(1), hal. 5-15, 2003, doi: 10.3151/jact.1.5.

Santamaría, A, González, J J, Losáñez, M M, Skaf, M dan Ortega-López, V, "The Design of Self-compacting Structural Mortar Containing Steelmaking Slags as Aggregate," Cem. Concr. Compos., vol. 111, hal. 2020, doi: 10.1016/j.cemconcomp.2020.103627.

Ding, H, Shen, X, Chen, A, Gu, R, Fang, Y dan Li, D, "Study on the Effect of Three Types of Calcium Sulfate on the Early Hydration andWorkability of Self-Compacting Repair Mortar," Materials vol. 16, no.(16), hal. 5648, 2023, doi: 10.3390/ma16165648.

Hammat, S, Menadi, B, Kenai, S, Khatib, J dan Kadri, E-H, "Properties of Self-Compacting Mortar Containing Slag with Different Finenesses," Civ. Eng. J., vol. 7, no.(5), hal. 840-856, 2021, doi: 10.28991/cej-2021-03091694.

Hadjsadok, A, Kenai, S, Courard, L, Michel, F dan Khatib, J, "Durability of mortar and concretes containing slag with low hydraulic activity," Cem. Concr. Compos., vol. 34, hal. 671-677, 2012, doi: 10.1016/j.cemconcomp.2012.02.011.

ASTM C188-18, Standard Test Method for Density of Hydraulic Cement. ASTM International, 2018.

ASTM C-128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, 2015.

ASTM C136/C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, 2014.

ASTM C33/C33M, Standard Specification for Concrete Aggregates. ASTM International, 2016.

Aïtcin, P-C, The Importance of the Water–Cement and Water–Binder Ratios. In: Science and Technology of Concrete Admixtures. Woodhead Publishing, 2016.

EFNARC, Specification and Guidelines for Self-Compacting Concrete. European Federation of National Associations Representing for Concrete, 2002.

ASTM C109/C109M-16, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 2016.

ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes. ASTM International, 2013.

Qureshi, M N dan Ghosh, S, "Sorptivity Ratio and Compressive Strength of Alkali-Activated Blast Furnace Slag Paste," Adv. Civ. Eng. Matls., vol. 3, no.(1), hal. 238-255, 2014, doi: 10.1520/ACEM20130113.

Xu, C, Li, H dan Yang, X, "Effect and Characterization of the Nucleation C-S-H Seed on the Reactivity of Granulated Blast Furnace Slag Powder," Constr. Build. Mater., vol. 238, hal. 117726, 2020, doi: 10.1016/j.conbuildmat.2019.117726.

Sakir, S, Raman, S N, Safiuddin, M, Kaish, A B M A dan Mutalib, A A, "Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction," Sustainability, vol. 12, no.(9), hal. 3888, 2020, doi: 10.3390/su12093888.

Published

2024-10-28