Life Cycle Cost Evaluation of Lab-Scale Modified Asphalt Mixture Production
DOI:
https://doi.org/10.26593/jrsi.v13i1.7259.37-46Keywords:
Life Cycle Cost, Cradle-to-Gate, Asphalt, ProductionAbstract
This paper compares the life cycle costs (LCC) of various asphalt mixture technologies added with polymeric substances that modify either the binder or the whole mix and evaluates the hotspot of each mix type with the scope of cradle-to-gate from the raw materials purchase to the production of 7 kg samples. The polymer-modified binder yields the largest total cost of IDR 12,197, followed by the polymer-modified warm and hot asphalt mixture with a difference of up to 3% and 14.5%, and the standard hot mix gives the lowest result (IDR 9,344) of 23.4% smaller than the largest. Raw material price holds the major contribution with approximately 82.7%, while electricity consumption accounts for 30%. Oven heating contributes the most to the calculated impact from the lab production by 40 to 60%, followed by the mixing activity by a 10 – 30% difference. Conclusively, the LCC of bituminous mixture production is heavily influenced by raw materials price and electricity consumption, and the standard hot mix asphalt generates the lowest total cost, despite having a higher cost than the warm mix in the production stage.
References
Apostolidis, P., Liu, X., Daniel, C. G., Erkens, S., & Scarpas, T. (2020). Effect of Synthetic Fibres on Fracture Performance of Asphalt Mortar. Road Materials and Pavement Design, 21(7), 1918–1931. https://doi.org/10.1080/14680629.2019.1574235
Arendt, R., Bachmann, T. M., Motoshita, M., Bach, V., & Finkbeiner, M. (2020). Comparison of Different Monetization Methods in LCA: A review. Sustainability, 12(24), 1–39. https://doi.org/10.3390/su122410493
Badan Pusat Statistik. (2022). Perkembangan Jumlah Kendaraan Bermotor Menurut Jenis (Unit), 2019-2021. https://www.bps.go.id/indicator/17/57/1/perkembangan-jumlah-kendaraan-bermotor-menurut-jenis.html
Brasileiro, L., Moreno-Navarro, F., Tauste-Martínez, R., Matos, J., & Rubio-Gámez, M. del C. (2019). Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A review. Sustainability, 11(3). https://doi.org/10.3390/su11030646
Cristobal-Garcia, J., Reale, F., Sala, S., Pant, R., & European Commission. Joint Research Centre. (2016). Life cycle Assessment for the Impact Assessment of Policies. Publications Office.
Daniel, C. G. (2020). Analysis of the Effect of Using Fiber Aramid-Polyolefin on the Strength, Stiffness, and Durability of Warm-Mix Asphalt. Jurnal Teknik Sipil ITB, 27(1), 9–16. https://doi.org/http://dx.doi.org/10.5614%2Fjts.2020.27.1.2
Daniel, C. G., Canny, K., Firdaus, F. M., & Iskandar, D. B. (2023). Studi Komparasi Dampak Lingkungan Produksi Campuran Aspal Hangat Modifikasi Polimer EVA dengan Campuran Aspal Panas Skala Laboratorium Menggunakan Life Cycle Assessment (LCA). TEKNIK, 44(1), 23–38. https://doi.org/10.14710/teknik.v44i1.52052
Daniel, C. G., Liu, X., Apostolidis, P., Erkens, S. M. J. G., & Scarpas, A. (2021). Low-temperature Fracture Behaviour of Synthetic Polymer-fibre Reinforced Warm Miix Asphalt. Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements (1st ed., Vol. 1, Issue 3, pp. 358–362). Taylor & Francis. https://doi.org/https://doi.org/10.1201/9781003251125
Daniel, C. G., Liu, X., Apostolidis, P., Erkens, S., & Scarpas, A. (2019). Impact of Synthetic Fibres on Asphalt Concrete Mix. Bituminous Mixtures and Pavements VII- Proceedings of the 7th International Conference on Bituminous Mixtures and Pavements, ICONFBMP 2019, 709–711. https://doi.org/10.1201/9781351063265-96
Daniel, C. G., Rifqon, M., Firdaus, F. M., & Canny, K. A. (2023). Perbandingan Dampak Lingkungan Produksi Skala Laboratorium Campuran Aspal Modifikasi Polimer Dengan Metode Campuran Basah dan Kering Menggunakan Life Cycle Assessment (LCA). Jurnal Jalan Dan Jembatan, 40(1), 17–31.
Daniel, C. G., Widjajakusuma, J., Otto, I., & Saputan, C. (2022). The Evaluation of Physical and Mechanical Properties of Synthetic Polymer Modified Hot and Warm Mix Asphalt. IOP Conference Series: Earth and Environmental Science, 1117(1), 012002. https://doi.org/10.1088/1755-1315/1117/1/012002
Dirjen Bina Marga. (2018). Spesifikasi Umum Bina Marga 2018.
Dutta, A. (2014). A General Study On Life Cycle Cost Analysis For Roads [National Institute Of Technology Rourkela].
Fazaeli, H., Samin, Y., Pirnoun, A., & Dabiri, A. S. (2016). Laboratory and Field Evaluation of the Warm Fiber Reinforced High Performance Asphalt Mixtures (Case Study Karaj – Chaloos Road). Construction and Building Materials, 122, 273–283. https://doi.org/10.1016/j.conbuildmat.2016.05.139
Gao, H., Zhang, L., Zhang, D., Ji, T., & Song, J. (2021). Mechanical Properties of Fiber-reinforced Asphalt Concrete: Finite Element Simulation and Experimental Study. E-Polymers, 21(1), 533–548. https://doi.org/10.1515/epoly-2021-0057
Gibson, N., & Li, X. (2015). Characterizing Cracking of Asphalt Mixtures with Fiber Reinforcement: Use of Cyclic Fatigue And Direct Tension Strength Tests. Transportation Research Record, 2507, 57–66. https://doi.org/10.3141/2507-07
Giustozzi, F., Crispino, M., Toraldo, E., & Mariani, E. (2015). Mix Design of Polymer-Modified and Fiber-Reinforced Warm-Mix Asphalts with High Amount of Reclaimed Asphalt Pavement: Achieving Sustainable and High-Performing Pavements. Transportation Research Record, 2523, 3–10. https://doi.org/10.3141/2523-01
Hao, J., Cao, P., Liu, Z., Wang, Z., & Xia, S. (2017). Developing of a SBS Polymer Modified Bitumen to Avoid Low Temperature Cracks in the Asphalt Facing of A Reservoir in a Harsh Climate Region. Construction and Building Materials, 150, 105–113. https://doi.org/10.1016/j.conbuildmat.2017.05.200
Ho, C. H., Shan, J., Wang, F., Chen, Y., & Almonnieay, A. (2016). Performance of Fiber-Reinforced Polymer-Modified Asphalt: Two-Year Review in Northern Arizona. In Transportation Research Record (Vol. 2575, pp. 138–149). National Research Council. https://doi.org/10.3141/2575-15
Horne, R., Grant, T., & Verghese, K. (2009). Life Cycle Assessment: Origins, Principles and Context. Life Cycle Assessment - Principles, Practice and Prospects (Vol. 53, Issue 9, p. 287). CSIRO Publishing.
Jaskuła, P., Stienss, M., & Szydłowski, C. (2017). Effect of Polymer Fibres Reinforcement on Selected Properties of Asphalt Mixtures. Procedia Engineering, 172, 441–448. https://doi.org/10.1016/j.proeng.2017.02.026
JRC Science Hub. (2016). Guide for Interpreting Life Cycle Assessment Result.
Kadek, I., Putra Igmas, A., Padma Devia, Y., & Negara, K. P. (2023). Life Cycle Cost Analysis to Maintain Material Construction on Hotel Development Project Batu. Rekayasa Sipil, 17(2), 186–191.
Karaman Öztaş, S. (2018). The Limitations of LCA Methodology Towards Sustainable Construction Materials. Lecture Notes in Civil Engineering, 6, 102–113. Springer. https://doi.org/10.1007/978-3-319-63709-9_8
Klopffer, W., & Grahl, B. (2014). Life Cycle Assessment (LCA) - A Guide to Best Practice (Vol. 148). Wiley - VCH.
Kompas.com. (2023, April 2). Daftar Tarif Listrik per KwH yang Berlaku Mulai April-Juni 2023. https://www.kompas.com/tren/read/2023/04/02/141500765/daftar-tarif-listrik-per-kwh-yang-berlaku-mulai-april-juni-2023
Li, Z., & Madanu, S. (2009). Highway Project Level Life-Cycle Benefit/Cost Analysis under Certainty, Risk, and Uncertainty: Methodology with Case Study. Journal Of Transportation Engineering, 516–526. https://doi.org/10.1061/ASCETE.1943-5436.0000012
Liang, S., Gu, H., Bilek, T., & Bergman, R. (2019). Life-Cycle Cost Analysis of a Mass Timber Building: Methodology and Hypothetical Case Study. www.fpl.fs.fed.us.
Maisham, M., Adnan, H., Adillah Ismail, N. A., & Asyikin Mahat, N. A. (2019). Developing a Research Methodology for Life Cycle Costing Framework for Application in Green Projects. IOP Conference Series: Earth and Environmental Science, 385(1). https://doi.org/10.1088/1755-1315/385/1/012066
Mearig, T., & Morris, L. (2018). Life Cycle Cost Analysis Handbook.
Menufandu, F., Setyawan, A., & Yulianto, B. (2017). Life Cycle Cost Analysis (LCCA) in Road Organization Application in Supiori Regency of Papua Province.
Montanelli, Eng. F., & srl, I. (2013). Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA). Procedia - Social and Behavioral Sciences, 104, 39–48. https://doi.org/10.1016/j.sbspro.2013.11.096
Nationale Milieu Database. (2022). Environmental Performance Assessment Method for Construction Works.
Nizamuddin, S., Boom, Y. J., & Giustozzi, F. (2021). Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers (Vol. 13, Issue 19). MDPI. https://doi.org/10.3390/polym13193242
Okhotnikova, E. S., Frolov, I. N., Ganeeva, Y. M., Firsin, A. A., & Yusupova, T. N. (2019). Rheological Behavior of Recycled Polyethylene Modified Bitumens. Petroleum Science and Technology, 37(10), 1136–1142. https://doi.org/10.1080/10916466.2019.1578796
Petrović, B., Zhang, X., Eriksson, O., & Wallhagen, M. (2021). Life Cycle Cost Analysis of a Single-Family House In Sweden. Buildings, 11(5). https://doi.org/10.3390/buildings11050215
Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Rossi, C. O. (2019). Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9(4). MDPI. https://doi.org/10.3390/app9040742
Poulikakos, L. D., L.D.Poulikakos, C.Papadaskalopoulou, B.Hofko, F.Gschösser, Falchetto, A. C., M.Bueno, M.Arraigada, J.Sousa, R.Ruiz, C.Petit, M.Loizidou, & M.N.Partl. (2017). Harvesting the Unexplored Potential of European Waste Materials for Road Construction. Resources, Conservation and Recycling, 32–44.
Rasane, K., & Ambre, H. (2019). A Study on Life Cycle Cost Analysis for Roads. International Research Journal of Engineering and Technology.
Ratajczak, M., & Wilmański, A. (2020). Evaluation of Laboratory Methods of Determination of Sbs Content in Polymer-Modified Bitumens. Materials, 13(22), 1–16. https://doi.org/10.3390/ma13225237
Reyes, H. E., Bojórquez, J., Cruz-Reyes, L., Ruiz, S. E., Reyes-Salazar, A., Bojórquez, E., Barraza, M., Formisano, A., Payán, O., & Torres, J. R. (2022). Development an Artificial Neural Network Model for Estimating Cost of R/C Building by Using Life-Cycle Cost Function: Case Study of Mexico City. Advances in Civil Engineering, 2022. https://doi.org/10.1155/2022/7418230
Shell Bitumen. (n.d.). SHELL CARIPHALTE - Maximize Performance, Seize Opportunities.
US Department of Transportation. (1998). Life-Cycle Cost Analysis in Pavement Design.
Wang, H. (2021). Crumb Rubber Modified Bitumen Experimental Characterization and Modelling [Delft University of Technology].
Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Rheological Behavior and Its Chemical Interpretation of Crumb Rubber Modified Asphalt Containing Warm-Mix Additives. Transportation Research Record, 2672(28), 337–348. https://doi.org/10.1177/0361198118781376
Wang, H., Liu, X., van de Ven, M., Lu, G., Erkens, S., & Skarpas, A. (2020). Fatigue Performance of Long-Term Aged Crumb Rubber Modified Bitumen Containing Warm-Mix Additives. Construction and Building Materials, 239. https://doi.org/10.1016/j.conbuildmat.2019.117824